Instantaneous three-dimensional (3D) density distributions of a shock-cell structure of perfectly and imperfectly expanded supersonic microjets escaping into an ambient space are measured. For the 3D observation of su...Instantaneous three-dimensional (3D) density distributions of a shock-cell structure of perfectly and imperfectly expanded supersonic microjets escaping into an ambient space are measured. For the 3D observation of supersonic microjets, non-scanning 3D computerized tomography (CT) technique using a 20-directional quantitative schlieren optical system with flashlight source is employed for simultaneous schlieren photography. The 3D density distributions data of the microjets are obtained by 3D-CT reconstruction of the projection’s images using maximum likelihood-expectation maximization. Axisymmetric convergent-divergent (Laval) circular and square micro nozzles with operating nozzle pressure ratio 5.0, 4.5, 4.0, 3.67, and 3.5 have been studied. This study examines perfectly expanded, overexpanded, and underexpanded supersonic microjets issued from micro nozzles with fully expanded jet Mach numbers <em>M</em><em><sub>j</sub></em> ranging from 1.47 - 1.71, where the design Mach number is <em>M<sub>d</sub></em> = 1.5. A complex phenomenon for free square microjets called axis switching is clearly observed with two types “upright” and “diagonal” of “cross-shaped”. The initial axis-switching is 45<span style="white-space:nowrap;">°</span> within the first shock-cell range. In addition, from the symmetry and diagonal views of square microjets for the first shock-cells, two different patterns of shock waves are viewed. The shock-cell spacing and supersonic core length for all nozzle pressure ratios are investigated and reported.展开更多
The development of modern information technology has led to significant demand for microoptical elements with complex surface profiles and nanoscale surface roughness.Therefore,various micro-and nanoprocessing techniq...The development of modern information technology has led to significant demand for microoptical elements with complex surface profiles and nanoscale surface roughness.Therefore,various micro-and nanoprocessing techniques are used to fabricate microoptical elements and systems.Femtosecond laser direct writing(FsLDW)uses ultrafast pulses and the ultraintense instantaneous energy of a femtosecond laser for micro-nano fabrication.FsLDW exhibits various excellent properties,including nonlinear multiphoton absorption,high-precision processing beyond the diffraction limit,and the universality of processable materials,demonstrating its unique advantages and potential applications in three-dimensional(3D)micro-nano manufacturing.FsLDW has demonstrated its value in the fabrication of various microoptical systems.This study details three typical principles of FsLDW,several design considerations to improve processing performance,processable materials,imaging/nonimaging microoptical elements,and their stereoscopic systems.Finally,a summary and perspective on the future research directions for FsLDW-enabled microoptical elements and stereoscopic systems are provided.展开更多
Three-dimensional(3 D)printing,also known as additive manufacturing,has the advantages of low cost,easy structure operation,rapid prototyping,and easy customization.In the past few years,materials with different struc...Three-dimensional(3 D)printing,also known as additive manufacturing,has the advantages of low cost,easy structure operation,rapid prototyping,and easy customization.In the past few years,materials with different structures,compositions,and properties have been widely studied as prospects in the field of 3 D printing.This paper reviews the synthesis methods and morphologies of one-,two-and threedimensional micro/nano materials and their composites,as well as their applications in electrochemistry,such as supercapacitors,batteries and electrocatalysis.The latest progress and breakthroughs in the synthesis and application of different structural materials in 3 D-printing materials,as well as the challenges and prospects of electrochemical applications,are discussed.展开更多
文摘Instantaneous three-dimensional (3D) density distributions of a shock-cell structure of perfectly and imperfectly expanded supersonic microjets escaping into an ambient space are measured. For the 3D observation of supersonic microjets, non-scanning 3D computerized tomography (CT) technique using a 20-directional quantitative schlieren optical system with flashlight source is employed for simultaneous schlieren photography. The 3D density distributions data of the microjets are obtained by 3D-CT reconstruction of the projection’s images using maximum likelihood-expectation maximization. Axisymmetric convergent-divergent (Laval) circular and square micro nozzles with operating nozzle pressure ratio 5.0, 4.5, 4.0, 3.67, and 3.5 have been studied. This study examines perfectly expanded, overexpanded, and underexpanded supersonic microjets issued from micro nozzles with fully expanded jet Mach numbers <em>M</em><em><sub>j</sub></em> ranging from 1.47 - 1.71, where the design Mach number is <em>M<sub>d</sub></em> = 1.5. A complex phenomenon for free square microjets called axis switching is clearly observed with two types “upright” and “diagonal” of “cross-shaped”. The initial axis-switching is 45<span style="white-space:nowrap;">°</span> within the first shock-cell range. In addition, from the symmetry and diagonal views of square microjets for the first shock-cells, two different patterns of shock waves are viewed. The shock-cell spacing and supersonic core length for all nozzle pressure ratios are investigated and reported.
基金supported by the National Natural Science Foundation of China(Nos.62275044,62205174,61875036)the Jinan“20 New Colleges and Universities”Innovation Team Introduction Project(202228047).
文摘The development of modern information technology has led to significant demand for microoptical elements with complex surface profiles and nanoscale surface roughness.Therefore,various micro-and nanoprocessing techniques are used to fabricate microoptical elements and systems.Femtosecond laser direct writing(FsLDW)uses ultrafast pulses and the ultraintense instantaneous energy of a femtosecond laser for micro-nano fabrication.FsLDW exhibits various excellent properties,including nonlinear multiphoton absorption,high-precision processing beyond the diffraction limit,and the universality of processable materials,demonstrating its unique advantages and potential applications in three-dimensional(3D)micro-nano manufacturing.FsLDW has demonstrated its value in the fabrication of various microoptical systems.This study details three typical principles of FsLDW,several design considerations to improve processing performance,processable materials,imaging/nonimaging microoptical elements,and their stereoscopic systems.Finally,a summary and perspective on the future research directions for FsLDW-enabled microoptical elements and stereoscopic systems are provided.
基金supported by the National Natural Science Foundation of China(No.U1904215)Natural Science Foundation of Jiangsu Province(No.BK20200044)Changjiang Scholars Program of the Ministry of Education(No.Q2018270)。
文摘Three-dimensional(3 D)printing,also known as additive manufacturing,has the advantages of low cost,easy structure operation,rapid prototyping,and easy customization.In the past few years,materials with different structures,compositions,and properties have been widely studied as prospects in the field of 3 D printing.This paper reviews the synthesis methods and morphologies of one-,two-and threedimensional micro/nano materials and their composites,as well as their applications in electrochemistry,such as supercapacitors,batteries and electrocatalysis.The latest progress and breakthroughs in the synthesis and application of different structural materials in 3 D-printing materials,as well as the challenges and prospects of electrochemical applications,are discussed.