期刊文献+
共找到200篇文章
< 1 2 10 >
每页显示 20 50 100
A methodology for damage evaluation of underground tunnels subjected to static loading using numerical modeling 被引量:1
1
作者 Shahriyar Heidarzadeh Ali Saeidi 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第6期1993-2005,共13页
We have proposed a methodology to assess the robustness of underground tunnels against potential failure.This involves developing vulnerability functions for various qualities of rock mass and static loading intensiti... We have proposed a methodology to assess the robustness of underground tunnels against potential failure.This involves developing vulnerability functions for various qualities of rock mass and static loading intensities.To account for these variations,we utilized a Monte Carlo Simulation(MCS)technique coupled with the finite difference code FLAC^(3D),to conduct two thousand seven hundred numerical simulations of a horseshoe tunnel located within a rock mass with different geological strength index system(GSIs)and subjected to different states of static loading.To quantify the severity of damage within the rock mass,we selected one stress-based(brittle shear ratio(BSR))and one strain-based failure criterion(plastic damage index(PDI)).Based on these criteria,we then developed fragility curves.Additionally,we used mathematical approximation techniques to produce vulnerability functions that relate the probabilities of various damage states to loading intensities for different quality classes of blocky rock mass.The results indicated that the fragility curves we obtained could accurately depict the evolution of the inner and outer shell damage around the tunnel.Therefore,we have provided engineers with a tool that can predict levels of damages associated with different failure mechanisms based on variations in rock mass quality and in situ stress state.Our method is a numerically developed,multi-variate approach that can aid engineers in making informed decisions about the robustness of underground tunnels. 展开更多
关键词 Fragility curves underground tunnels Vulnerability functions Brittle damage FLAC3d Numerical modeling
下载PDF
Building Information Modeling-Based Secondary Development System for 3D Modeling of Underground Pipelines 被引量:3
2
作者 Jun Chen Rao Hu +1 位作者 Xianfeng Guo Feng Wu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2020年第5期647-660,共14页
Underground pipeline networks constitute a major component of urban infrastructure,and thus,it is imperative to have an efficient mechanism to manage them.This study introduces a secondary development system to effici... Underground pipeline networks constitute a major component of urban infrastructure,and thus,it is imperative to have an efficient mechanism to manage them.This study introduces a secondary development system to efficiently model underground pipeline networks,using the building information modeling(BIM)-based software Revit.The system comprises separate pipe point and tubulation models.Using a Revit application programming interface(API),the spatial position and attribute data of the pipe points are extracted from a pipeline database,and the corresponding tubulation data are extracted from a tubulation database.Using the Family class in Revit API,the cluster in the self-built library of pipe point is inserted into the spatial location and the attribute data is added;in the same way,all pipeline instances in the pipeline system are created.The extension and localization of the model accelerated the modeling speed.The system was then used in a real construction project.The expansion of the model database and rapid modeling made the application of BIM technology in three-dimensional visualization of underground pipeline networks more convenient.Furthermore,it has applications in pipeline engineering construction and management. 展开更多
关键词 Building information modeling secondary development underground pipeline 3d modeling visualization.
下载PDF
Numerical three-dimensional modeling of earthen dam piping failure
3
作者 Zhengang Wang 《Water Science and Engineering》 EI CAS CSCD 2024年第1期72-82,共11页
A physically-based numerical three-dimensional earthen dam piping failure model is developed for homogeneous and zoned soil dams.This model is an erosion model,coupled with force/moment equilibrium analyses.Orifice fl... A physically-based numerical three-dimensional earthen dam piping failure model is developed for homogeneous and zoned soil dams.This model is an erosion model,coupled with force/moment equilibrium analyses.Orifice flow and two-dimensional(2D)shallow water equations(SWE)are solved to simulate dam break flows at different breaching stages.Erosion rates of different soils with different construction compaction efforts are calculated using corresponding erosion formulae.The dam's real shape,soil properties,and surrounding area are programmed.Large outer 2D-SWE grids are used to control upstream and downstream hydraulic conditions and control the boundary conditions of orifice flow,and inner 2D-SWE flow is used to scour soil and perform force/moment equilibrium analyses.This model is validated using the European Commission IMPACT(Investigation of Extreme Flood Processes and Uncertainty)Test#5 in Norway,Teton Dam failure in Idaho,USA,and Quail Creek Dike failure in Utah,USA.All calculated peak outflows are within 10%errors of observed values.Simulation results show that,for a V-shaped dam like Teton Dam,a piping breach location at the abutment tends to result in a smaller peak breach outflow than the piping breach location at the dam's center;and if Teton Dam had broken from its center for internal erosion,a peak outflow of 117851 m'/s,which is 81%larger than the peak outflow of 65120 m3/s released from its right abutment,would have been released from Teton Dam.A lower piping inlet elevation tends to cause a faster/earlier piping breach than a higher piping inlet elevation. 展开更多
关键词 3d dam breach model 2D shallow water equations 3d slope stability analysis Piping failure Teton Dam Quail Creek Dike
下载PDF
Stochastic analysis of excavation-induced wall deflection and box culvert settlement considering spatial variability of soil stiffness
4
作者 Ping Li Shiwei Liu +2 位作者 Jian Ji Xuanming Ding Mengdie Bao 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第12期3256-3270,共15页
In this study, a three-dimensional (3D) finite element modelling (FEM) analysis is carried out to investigate the effects of soil spatial variability on the response of retaining walls and an adjacent box culvert due ... In this study, a three-dimensional (3D) finite element modelling (FEM) analysis is carried out to investigate the effects of soil spatial variability on the response of retaining walls and an adjacent box culvert due to a braced excavation. The spatial variability of soil stiffness is modelled using a variogram and calibrated by high-quality experimental data. Multiple random field samples (RFSs) of soil stiffness are generated using geostatistical analysis and mapped onto a finite element mesh for stochastic analysis of excavation-induced structural responses by Monte Carlo simulation. It is found that the spatial variability of soil stiffness can be described by an exponential variogram, and the associated vertical correlation length is varied from 1.3 m to 1.6 m. It also reveals that the spatial variability of soil stiffness has a significant effect on the variations of retaining wall deflections and box culvert settlements. The ignorance of spatial variability in 3D FEM can result in an underestimation of lateral wall deflections and culvert settlements. Thus, the stochastic structural responses obtained from the 3D analysis could serve as an effective aid for probabilistic design and analysis of excavations. 展开更多
关键词 Three-dimensional(3d) Geostatistical analysis Random finite element modelling(FEM) Spatial variability of soil stiffness
下载PDF
A Semi-automatic method for segmentation and 3D modeling of glioma tumors from brain MRI 被引量:1
5
作者 S. Ananda Resmi Tessamma Thomas 《Journal of Biomedical Science and Engineering》 2012年第7期378-383,共6页
This work presents an efficient method for volume rendering of glioma tumors from segmented 2D MRI Datasets with user interactive control, by replacing manual segmentation required in the state of art methods. The mos... This work presents an efficient method for volume rendering of glioma tumors from segmented 2D MRI Datasets with user interactive control, by replacing manual segmentation required in the state of art methods. The most common primary brain tumors are gliomas, evolving from the cerebral supportive cells. For clinical follow-up, the evaluation of the preoperative tumor volume is essential. Tumor portions were automatically segmented from 2D MR images using morphological filtering techniques. These segmented tumor slices were propagated and modeled with the software package. The 3D modeled tumor consists of gray level values of the original image with exact tumor boundary. Axial slices of FLAIR and T2 weighted images were used for extracting tumors. Volumetric assessment of tumor volume with manual segmentation of its outlines is a time-consuming process and is prone to error. These defects are overcome in this method. Authors verified the performance of our method on several sets of MRI scans. The 3D modeling was also done using segmented 2D slices with the help of medical software package called 3D DOCTOR for verification purposes. The results were validated with the ground truth models by the Radiologist. 展开更多
关键词 3d modeling GLIOMA TUMOR SEGMENTATION VOLUMETRIC analysis Brain MRI
下载PDF
Evaluating performance of lignite pillars with 2D approximation techniques and 3D numerical analyses 被引量:2
6
作者 Deliveris Alexandros V. Benardos Andreas 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2017年第6期929-936,共8页
This paper attempts to investigate the use of approximate 2D numerical simulation techniques for the evaluation of lignite pillar geomechanical response, formed via the room and pillar mining method.Performance and ap... This paper attempts to investigate the use of approximate 2D numerical simulation techniques for the evaluation of lignite pillar geomechanical response, formed via the room and pillar mining method.Performance and applicability of the developing methodology are assessed through benchmarking with a more direct and accurate 3D numerical model. This analysis utilizes an underground lignite mine which is being developed in soft rock environment. Through the decisions made for the optimum room and pillar layout, the design process highlights the strong points and the weaknesses of 2D finite element analysis, and provides useful recommendations for future reference. The interpretations of results demonstrate that 2D approximation techniques come near quite well to the actual 3D problem.However, external load approximation technique seems to fit even better with the respective outcomes from the 3D analyses. 展开更多
关键词 GEOMECHANICS Room and PILLAR underground LIGNITE mine Finite element method 3d numerical analysis AVERAGE PILLAR stress
下载PDF
3D Model Occlusion Culling Optimization Method Based on WebGPU Computing Pipeline
7
作者 Liming Ye Gang Liu +4 位作者 Genshen Chen Kang Li Qiyu Chen Wenyao Fan Junjie Zhang 《Computer Systems Science & Engineering》 SCIE EI 2023年第11期2529-2545,共17页
Nowadays,Web browsers have become an important carrier of 3D model visualization because of their convenience and portability.During the process of large-scale 3D model visualization based on Web scenes with the probl... Nowadays,Web browsers have become an important carrier of 3D model visualization because of their convenience and portability.During the process of large-scale 3D model visualization based on Web scenes with the problems of slow rendering speed and low FPS(Frames Per Second),occlusion culling,as an important method for rendering optimization,can remove most of the occluded objects and improve rendering efficiency.The traditional occlusion culling algorithm(TOCA)is calculated by traversing all objects in the scene,which involves a large amount of repeated calculation and time consumption.To advance the rendering process and enhance rendering efficiency,this paper proposes an occlusion culling with three different optimization methods based on the WebGPU Computing Pipeline.Firstly,for the problem of large amounts of repeated calculation processes in TOCA,these units are moved from the CPU to the GPU for parallel computing,thereby accelerating the calculation of the Potential Visible Sets(PVS);Then,for the huge overhead of creating pipeline caused by too many 3D models in a certain scene,the Breaking Occlusion Culling Algorithm(BOCA)is introduced,which removes some nodes according to building a Hierarchical Bounding Volume(BVH)scene tree to reduce the overhead of creating pipelines;After that,the structure of the scene tree is transmitted to the GPU in the order of depth-first traversal and finally,the PVS is obtained by parallel computing.In the experiments,3D geological models with five different scales from 1:5,000 to 1:500,000 are used for testing.The results show that the proposed methods can reduce the time overhead of repeated calculation caused by the computing pipeline creation and scene tree recursive traversal in the occlusion culling algorithm effectively,with 97%rendering efficiency improvement compared with BOCA,thereby accelerating the rendering process on Web browsers. 展开更多
关键词 WebGPU potential visible set occlusion culling computing pipeline 3d model
下载PDF
3D Modelling from New and Existing Gravity Data of an Intrusive Body in the Northern Part of Kribi-Campo Sub-Basin in Cameroon 被引量:4
8
作者 Kue Petou Rokis Malquaire Owona Angue Marie Louise +1 位作者 Njingti Nfor Manguelle-Dicoum Eliezer 《International Journal of Geosciences》 2017年第8期984-1003,共20页
A new gravity survey was carried out in the northern part of the onshore Kribi- Campo sub-basin in Cameroon. The data were incorporated to the existing ones and then analyzed and modeled in order to elucidate the subs... A new gravity survey was carried out in the northern part of the onshore Kribi- Campo sub-basin in Cameroon. The data were incorporated to the existing ones and then analyzed and modeled in order to elucidate the subsurface structure of the area. The area is characterized in its north-western part by considerably high positive anomalies indicative of the presence of a dense intrusive body. We find, 1) from the analysis of the gravity residual anomaly map, the high positive anomalies observed are the signature of a shallow dense structure;2) from the multi-scale analysis of the maxima of the horizontal gradient, the structure is confined between depths of 0.5 km and 5 km;3) from the quantitative interpretation of residual anomalies by spectral analysis, the depth to the upper surface of the intrusive body is not uniform, the average depth of the bottom is h1 = 3.6 km and the depths to particular sections of the roof of the intrusion are h2 = 1.6 km and h3 = 0.5 km;4) and the 3D modeling gives results that are suggestive of the presence of contacts between rocks of different densities at different depths and a dense intrusive igneous body in the upper crust of the Kribi zone. From the 3D model the dense intrusive igneous block is surrounded by sedimentary formations to the south-west and metamorphic formations to the north-east. Both formations have a density of about 2.74 g/cm3. The near surface portions of this igneous block lie at a depth range of 0.5 km to 1.5 km while its lower surface has a depth range of 3.6 km to 5.2 km. The shape of the edges and the bottom of the intrusive body are suggestive of the fact that it forms part of a broader structure underlying the Kribi-Campo sub-basin with a great influence on the sedimentary cover. 展开更多
关键词 Kribi-Campo Sub-Basin GRAVITY Data 3d MODELLING SPECTRAL analysis RESIDUAL ANOMALY
下载PDF
3D Modeling Quantitative Evaluation for the Underground Space Resources in Beijing City
9
作者 Yi Tian,Jianping Chen,Limei Wang School of Land Resources and Technology,China University of Geosciences(Beijing),Beijing 100083,China. 《地学前缘》 EI CAS CSCD 北大核心 2009年第S1期283-284,共2页
Recently,underground space evaluation has become fundamental for a city’s long term sustainable development planning.This paper,based on the 3D-GIS tools,adopts"multi-factors comprehensive evaluation"models... Recently,underground space evaluation has become fundamental for a city’s long term sustainable development planning.This paper,based on the 3D-GIS tools,adopts"multi-factors comprehensive evaluation"models to establish a practicable underground space resources quantitative evaluation system.It sets up 展开更多
关键词 CITY underground SPACE RESOURCES QUANTITATIVE evaluation 3d modeling
下载PDF
Spatial analysis for underground pipeline network information system
10
作者 XIA Chun-lin, MA Zhen-li, CAO Guang-fu (Liaoning Technical University, Fuxin 123000, China) 《中国有色金属学会会刊:英文版》 CSCD 2005年第S1期28-31,共4页
It is appropriate to establish underground pipeline network information system based on MapInfo software platform in many enterprises when taking account of the firm size and data amount. Since some functions of MapIn... It is appropriate to establish underground pipeline network information system based on MapInfo software platform in many enterprises when taking account of the firm size and data amount. Since some functions of MapInfo in spatial analysis are not very strong relatively, it is difficult for MapInfo to fulfill some common functions about pipeline analysis such as spatial configuration, three-dimensional display, pipe exploding and so on. The thought and arithmetic to solve the above problems are approached based on respect theories of computer graphics and graph theory. A variety of function moduli have developed by means of senior computer languages and the system integration is realized. 展开更多
关键词 pipeline NETWORK information system SPATIAL CONFIGURATION analysis 3d DISPLAY NETWORK analysis
下载PDF
Numerical Investigation of Laser Surface Hardening of AISI 4340 Using 3D FEM Model for Thermal Analysis of Different Laser Scanning Patterns
11
作者 Baha Tarchoun Abderrazak El Ouafi Ahmed Chebak 《Modeling and Numerical Simulation of Material Science》 2020年第3期31-54,共24页
<span style="font-family:Verdana;">Laser surface hardening is becoming one of the most successful heat treatment processes for improving wear and fatigue properties of steel parts. In this process, the... <span style="font-family:Verdana;">Laser surface hardening is becoming one of the most successful heat treatment processes for improving wear and fatigue properties of steel parts. In this process, the heating system parameters and the material properties have important effects on the achieved hardened surface characteristics. The control of these variables using predictive modeling strategies leads to the desired surface properties without following the fastidious trial and error method. However, when the dimensions of the surface to be treated are larger than the cross section of the laser beam, various laser scanning patterns can be used. Due to their effects on the hardened surface properties, the attributes of the selected scanning patterns become significant variables in the process. This paper presents numerical and experimental investigations of four scanning patterns for laser surface hardening of AISI 4340 steel. The investigations are based on exhaustive modelling and simulation efforts carried out using a 3D finite element thermal analysis and structured experimental study according to Taguchi method. The temperature distribution and the hardness profile attributes are used to evaluate the effects of heating parameters and patterns design parameters on the hardened surface characteristics. This is very useful for integrating the scanning patterns</span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">’</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> features in an efficient predictive modeling approach. A structured experimental design combined to improved statistical analysis tools </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">is</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> used</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> to</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> assess the 3D model performance. The experiments are performed on a 3 kW Nd:Yag laser system. The modeling results exhibit a great agreement between the predicted and measured values for the hardened surface characteristics. The model evaluation reveal</span></span></span><span><span><span>s </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">also its ability to provide not only accurate and robust predictions of the temperature distribution and the hardness profile as well an in-depth analysis of the effects of the process parameters.</span></span></span> 展开更多
关键词 Laser Surface Hardening 3d Thermal analysis Finite Element Modelling AISI 4340 Steel Laser Scanning Patterns Taguchi Method ANOVA Nd:Yag Laser Source
下载PDF
Coping with uncertainties through an automated workflow for 3D reservoir modelling of carbonate reservoirs 被引量:2
12
作者 Christoforos Benetatos Giorgio Giglio 《Geoscience Frontiers》 SCIE CAS CSCD 2021年第6期361-375,共15页
Reliable 3D modelling of underground hydrocarbon reservoirs is a challenging task due to the complexity of the underground geological formations and to the availability of different types of data that are typically af... Reliable 3D modelling of underground hydrocarbon reservoirs is a challenging task due to the complexity of the underground geological formations and to the availability of different types of data that are typically affected by uncertainties. In the case of geologically complex depositional environments, such as fractured hydrocarbon reservoirs, the uncertainties involved in the modelling process demand accurate analysis and quantification in order to provide a reliable confidence range of volumetric estimations. In the present work, we used a 3D model of a fractured carbonate reservoir and populated it with different lithological and petrophysical properties. The available dataset also included a discrete fracture network(DFN) property that was used to model the fracture distribution. Uncertainties affecting lithological facies, their geometry and absolute positions(related to the fault system), fracture distribution and petrophysical properties were accounted for. We included all different types of uncertainties in an automated approach using tools available in today’s modelling software packages and combining all the uncertain input parameters in a series of statistically representative geological realizations. In particular, we defined a specific workflow for the definition of the absolute permeability according to an equivalent, single porosity approach, taking into account the contribution of both the matrix and the fracture system. The results of the analyses were transferred into a 3D numerical fluid-dynamic simulator to evaluate the propagation of the uncertainties associated to the input data down to the final results, and to assess the dynamic response of the reservoir following a selected development plan. The "integrated approach" presented in this paper can be useful for all technicians involved in the construction and validation of 3D numerical models of hydrocarbon-bearing reservoirs and can potentially become part of the educational training for young geoscientists and engineers, since an integrated and well-constructed workflow is the backbone of any reservoir study. 展开更多
关键词 Uncertainty propagation 3d geological modelling Integrated study Carbonate rock Risk analysis
下载PDF
Evaluation of urban underground space resources using a negative list method: Taking Xi'an City as an example in China 被引量:7
13
作者 Mao-sheng Zhang Hua-qi Wang +3 位作者 Ying Dong Lin Li Ping-ping Sun Ge Zhang 《China Geology》 2020年第1期124-136,共13页
Utilization of urban underground space has become a vital approach to alleviate the strain on urban land resources,and to optimize the structure and pattem of the city.It is also very important to improve the city env... Utilization of urban underground space has become a vital approach to alleviate the strain on urban land resources,and to optimize the structure and pattem of the city.It is also very important to improve the city environment,build livable city and increase the capacity of the city.Based on the analysis of existing evaluation methods and their problems,a method for evaluating underground space resources based on a negative list of adverse factors affecting underground space development is proposed,to be primarily used in urban planning stages.A list of the adverse factors is established,including limiting factors,constraining factors and influencing factors.Taking Xi'an as an example,using a geographical information system platform,a negative list of adverse factors for the underground space resources in Xi'an City are evaluated,and preventive measures are proposed.Natural resources,exploitable resources,and the potential growth of exploitable underground space resources are evaluated.Underground space assessment in the different development stages of the city,collaborative utilization and safety evaluation for multiple subsurface resources,environmental impact and assessment,as well as evaluation methods based on big data and intelligent optimization algorithms are all discussed with the aim of serving city planning and construction. 展开更多
关键词 Urban geology Negative list Natural resources for underground space Exploitable resources for underground space 3d geological structure model GIS platform Urban geological survey engineering Xi'an City Shaanxi Province China
下载PDF
Discussion on applying an analytical method to optimize the anti-freeze design parameters for underground water pipelines in seasonally frozen areas 被引量:1
14
作者 Ji Chen JingYi Zhao +1 位作者 Kun Li Yu Sheng 《Research in Cold and Arid Regions》 CSCD 2016年第6期467-476,共10页
Adopting the quasi-three-dimensional (Quasi-3D) numerical method to optimize the anti-freeze design parameters of an underground pipeline usually involves heavy numerical calculations. Here, the fitting formulae bet... Adopting the quasi-three-dimensional (Quasi-3D) numerical method to optimize the anti-freeze design parameters of an underground pipeline usually involves heavy numerical calculations. Here, the fitting formulae between the safe con-veyance distance (SCD) of a water pipeline and six influencing factors are established based on the lowest water temper-ature (LWT) along the pipeline axis direction. With reference to the current widely used anti-freeze design approaches for underground pipelines in seasonally frozen areas, this paper first analyzes the feasibility of applying the maximum frozen penetration (MFP) instead of the mean annual ground surface temperature (MAGST) and soil water content (SWC) to calculate the SCD. The results show that the SCD depends on the buried depth if the MFP is fixed and the variation of the MAGST and SWC combination does not significantly change the SCD. A comprehensive formula for the SCD is estab-lished based on the relationships between the SCD and several primary influencing factors and the interaction among them. This formula involves five easy-to-access parameters: the MFP, buried depth, pipeline diameter, flow velocity, and inlet water temperature. A comparison between the analytical method and the numerical results based on the Quasi-3D method indicates that the two methods are in good agreement overall. The analytic method can be used to optimize the anti-freeze design parameters of underground water pipelines in seasonally frozen areas under the condition of a 1.5 safety coefficient. 展开更多
关键词 Quasi-3d method analytical method maximum frozen penetration underground water pipeline seasonally frozen area
下载PDF
Application of 3D stereoscopic visualization technology in casting aspect 被引量:1
15
作者 Kang Jinwu Zhang Xiaopeng +1 位作者 Zhang Chi Liu Baicheng 《China Foundry》 SCIE CAS 2014年第4期308-313,共6页
3D stereoscopic visualization technology is coming into more and more common use in the field of entertainment,and this technology is also beginning to cut a striking figure in casting industry and scientific research... 3D stereoscopic visualization technology is coming into more and more common use in the field of entertainment,and this technology is also beginning to cut a striking figure in casting industry and scientific research.The history,fundamental principle,and devices of 3D stereoscopic visualization technology are reviewed in this paper.The authors’research achievements on the 3D stereoscopic visualization technology in the modeling and simulation of the casting process are presented.This technology can be used for the observation of complex 3D solid models of castings and the simulated results of solidification processes such as temperature,fluid flow,displacement,stress strain and microstructure,as well as the predicted defects such as shrinkage/porosity,cracks,and deformation.It can also be used for other areas relating to 3D models,such as assembling of dies,cores,etc.Several cases are given to compare the illustration of simulated results by traditional images and red-blue 3D stereoscopic images.The spatial shape is observed better by the new method.The prospect of3D stereoscopic visualization in the casting aspect is discussed as well.The need for aided-viewing devices is still the most prominent problem of 3D stereoscopic visualization technology.However,3D stereoscopic visualization represents the tendency of visualization technology in the future;and as the problem is solved in the years ahead,great breakthroughs will certainly be made for its application in casting design and modeling and simulation of the casting processes. 展开更多
关键词 3d stereoscopic visualization technology CASTING modeling and simulation observation and analysis
下载PDF
Subsurface Structural Mapping Using Combined Terrestrial and Grace Gravity Data of the Adamawa Plateau (North-Cameroon) 被引量:1
16
作者 Bouba Apollinaire Kamguia Joseph +4 位作者 Tabod Charles Tabod Yap Loudi Nouayou Robert Kande Houetchak Ludovic Oyoa Valentin 《International Journal of Geosciences》 2017年第7期869-887,共19页
In order to analyze and determine the geological structures of the Adamawa plateau, the terrestrial gravity data were combined to data computed from GGM02C gravity model. The dense gravity net obtained were further in... In order to analyze and determine the geological structures of the Adamawa plateau, the terrestrial gravity data were combined to data computed from GGM02C gravity model. The dense gravity net obtained were further introduced into qualitative and quantitative interpretations. The resulting Bouguer anomaly map obtained from combined data shows NE-SW direction which nearly coincides with the main direction of the fractures affecting the basement in the region and indicates strong gradients marking the presence of discontinuities between heavy and negative gravity anomaly. In order to conduct the quantitative interpretation of the combined gravity data, three profiles were drawn on the residual Bouguer anomaly map and therefore were interpreted using spectral analysis method and 3D density inversion. The knowledge of the depth and density of the geological structures show an uplift of dense rocks under the granite-gneiss substratum. This dense material found in the ENE-WSW direction of the Adamawa Plateau is interpreted as basaltic intrusion probably resulting from tectonic processes. According to this study, the depths of 3.83 km and 9.62 km are the new values of depths obtained for futures investigations in the Adamawa plateau. 展开更多
关键词 GGM02C Adamawa PLATEAU Bouguer ANOMALY 3d Density Model SPECTRAL analysis
下载PDF
ANN Based Predictive Modelling of Weld Shape and Dimensions in Laser Welding of Galvanized Steel in Butt Joint Configurations 被引量:1
17
作者 Laurent Jacques Abderrazak El Ouafi 《Journal of Minerals and Materials Characterization and Engineering》 2018年第3期316-332,共17页
The quality assessment and prediction becomes one of the most critical requirements for improving reliability, efficiency and safety of laser welding. Accurate and efficient model to perform non-destructive quality es... The quality assessment and prediction becomes one of the most critical requirements for improving reliability, efficiency and safety of laser welding. Accurate and efficient model to perform non-destructive quality estimation is an essential part of this assessment. This paper presents a structured and comprehensive approach developed to design an effective artificial neural network based model for weld bead geometry prediction and control in laser welding of galvanized steel in butt joint configurations. The proposed approach examines laser welding parameters and conditions known to have an influence on geometric characteristics of the welds and builds a weld quality prediction model step by step. The modelling procedure begins by examining, through structured experimental investigations and exhaustive 3D modelling and simulation efforts, the direct and the interaction effects of laser welding parameters such as laser power, welding speed, fibre diameter and gap, on the weld bead geometry (i.e. depth of penetration and bead width). Using these results and various statistical tools, various neural network based prediction models are developed and evaluated. The results demonstrate that the proposed approach can effectively lead to a consistent model able to accurately and reliably provide an appropriate prediction of weld bead geometry under variable welding conditions. 展开更多
关键词 Laser Welding Predictive modeling WELD Shape WELD DIMENSIONS Artificial Neural Networks 3d modeling Finite Element Method Design of Experiments analysis of Variance
下载PDF
Estimation of drift limits for different seismic damage states of RC frame staging in elevated water tanks using Park and Ang damage index
18
作者 Suraj O.Lakhade Ratnesh Kumar O.R.Jaiswal 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2020年第1期161-177,共17页
Damage to elevated water tanks in past earthquakes can be attributed to the poor performance of their supporting frame staging. In order to ascertain the performance of these elevated water tanks, it is crucial to cat... Damage to elevated water tanks in past earthquakes can be attributed to the poor performance of their supporting frame staging. In order to ascertain the performance of these elevated water tanks, it is crucial to categorize the damage in quantifiable damage states. Among various parameters to quantify the damage states, the top drift of frame staging can be conveniently correlated to the different damage levels. In literature, drift limits corresponding to different damage states of the frame staging of the elevated water tank are not available. In the present study, drift limits for RC frame staging in elevated water tanks corresponding to different seismic damage states have been proposed. Various damage states of the elevated water tank have been determined using the Park and Ang damage index. The Park and Ang damage index utilizes results of both pushover analysis and incremental dynamic analysis. Twelve models of elevated water tanks have been developed considering variation in staging height and tank capacity. Incremental dynamic analysis has been performed using the suite of twelve actual earthquake ground motions. Based on the regression analysis between damage indexes and drift, limiting drift values for each damage state are proposed. 展开更多
关键词 elevated water tank frame staging damage states drift limit 3d modelling incremental dynamic analysis pushover analysis
下载PDF
Isogeometric analysis for free vibration of bidirectional functionally graded plates in the fluid medium
19
作者 Quoc-Hoa Pham Phu-Cuong Nguyen +1 位作者 Van Ke Tran Trung Nguyen-Thoi 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2022年第8期1311-1329,共19页
This paper for first time proposes an isogeometric analysis (IGA) for free vibration response of bi-directional functionally graded (BDFG) rectangular plates in the fluid medium. Material properties of the BDFG plate ... This paper for first time proposes an isogeometric analysis (IGA) for free vibration response of bi-directional functionally graded (BDFG) rectangular plates in the fluid medium. Material properties of the BDFG plate change in both the thickness and length directions via power-law distributions and Mori-Tanaka model. The governing equation of motion of BDFG plate in the fluid-plate system is formulated basing on Hamilton's principle and the refined quasi three-dimensional (3D) plate theory with improved function f(z). The fluid velocity potential is derived from the boundary conditions of the fluid-plate system and is used to determine the added mass. The discrete system of equations is derived from the Galerkin weak form and numerically analyzed by IGA. The accuracy and reliability of the proposed solutions are verified by comparing the obtained results with those published in the literature. Moreover, the effects of the various parameters such as the interaction boundary condition, geometric parameter, submerged depth of plate, fluid density, fluid level, and the material volume control coefficients on the free vibration behavior of BDFG plate in the fluid medium are investigated in detail. Some major findings regarding the numerical results are withdrawn in conclusions. 展开更多
关键词 Contact plate-fluid Refined quasi 3d plate theory Mori-Tanaka model Isogeometric analysis Bidirectional functionally graded plate
下载PDF
Crustal Structure and Tectonic Setting over the Panafrican Domain in Loum-Minta Area (Centre-East Cameroon) from Aeromagnetic Analysis
20
作者 Jean Aimé Mono Marcelin Bikoro Bi-Alou +3 位作者 Arsene Meying Theophile Ndougsa-Mbarga Stéphane Patrick Assembe Crépin Timoléon Kofané 《Journal of Geoscience and Environment Protection》 2019年第4期61-81,共21页
The present work aims to determine the geological structure, to highlight and to determine the characteristics of the fault system responsible for the current structure of the study area through the interpretation of ... The present work aims to determine the geological structure, to highlight and to determine the characteristics of the fault system responsible for the current structure of the study area through the interpretation of available aeromagnetic data. Total magnetic intensity anomaly (TMI) was critically interpreted using several analysis techniques including Reduction to Equator (RTE), First Vertical Derivative, upward continuation, spectral analysis and 2D3/4 modelling. All results obtained from the interpretation process were combined together to draw an interpretative geological map of the area and allow the general view of the surface and sub-surface structures. The interpretative geological map reveals that the geological formations of the studied area appear to be intensely fractured by an E-W, ENE-WSW and NE-SW main orientation fault system. The lineaments identified in the area study could be linked to the Pan-African orogeny and seem to correspond to deep-seated basement structures, which are referred to the tectonic boundary between Congo Craton and the Pan-African orogeny belt. According to spectral analysis results, the depths of the sources of superficial and deep magnetic anomalies are 2500 m and 12,000 m respectively. The 2D3/4 modelling of one magnetic profile plotted on the reduced residual map at the equator was performed to approximate the geometry and depth of the sources of magnetic anomalies, the model suggests the intrusion of a large body of high susceptibility during the continental collision. The results of this study can be used to better understand deep-seated basement structures and to support decisions with regard to the development of industrial areas, as well as of hydrogeological and/or mining investigations to be undertaken in the study area. 展开更多
关键词 AEROMAGNETIC Upward CONTINUATION Spectral analysis Modelling 2D3/4
下载PDF
上一页 1 2 10 下一页 到第
使用帮助 返回顶部