期刊文献+
共找到252篇文章
< 1 2 13 >
每页显示 20 50 100
3D DEM simulation of hard rock fracture in deep tunnel excavation induced by changes in principal stress magnitude and orientation 被引量:1
1
作者 Weiqi Wang Xia-Ting Feng +2 位作者 Qihu Wang Rui Kong Chengxiang Yang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第10期3870-3884,共15页
To achieve the loading of the stress path of hard rock,the spherical discrete element model(DEM)and the new flexible membrane technology were utilized to realize the transient loading of three principal stresses with ... To achieve the loading of the stress path of hard rock,the spherical discrete element model(DEM)and the new flexible membrane technology were utilized to realize the transient loading of three principal stresses with arbitrary magnitudes and orientations.Furthermore,based on the deep tunnel of China Jinping Underground Laboratory II(CJPL-II),the deformation and fracture evolution characteristics of deep hard rock induced by excavation stress path were analyzed,and the mechanisms of transient loading-unloading and stress rotation-induced fractures were revealed from a mesoscopic perspective.The results indicated that the stressestrain curve exhibits different trends and degrees of sudden changes when subjected to transient changes in principal stress,accompanied by sudden changes in strain rate.Stress rotation induces spatially directional deformation,resulting in fractures of different degrees and orientations,and increasing the degree of deformation anisotropy.The correlation between the degree of induced fracture and the unloading magnitude of minimum principal stress,as well as its initial level is significant and positive.The process of mechanical response during transient unloading exhibits clear nonlinearity and directivity.After transient unloading,both the minimum principal stress and minimum principal strain rate decrease sharply and then tend to stabilize.This occurs from the edge to the interior and from the direction of the minimum principal stress to the direction of the maximum principal stress on theε1-ε3 plane.Transient unloading will induce a tensile stress wave.The ability to induce fractures due to changes in principal stress magnitude,orientation and rotation paths gradually increases.The analysis indicates a positive correlation between the abrupt change amplitude of strain rate and the maximum unloading magnitude,which is determined by the magnitude and rotation of principal stress.A high tensile strain rate is more likely to induce fractures under low minimum principal stress. 展开更多
关键词 Deep hard rock tunnel Three-dimensional(3d)discrete element model(DEM) Magnitude and orientation of principal stress Transient unloading Fracture mechanism
下载PDF
Application of Digital Technology in Road and Bridge Design
2
作者 Bai Fan 《Journal of Architectural Research and Development》 2024年第4期92-99,共8页
With the development and progress of science and technology,road and bridge design has experienced rapid development,from the initial manual drawing design to the popularity of Computer-Aided Design(CAD),and then to t... With the development and progress of science and technology,road and bridge design has experienced rapid development,from the initial manual drawing design to the popularity of Computer-Aided Design(CAD),and then to today’s digital software design era.Early designers relied on hand-drawn paper design forms which was time-consuming and error-prone.Digital support for road and bridge design not only saves the design time but the design quality has also achieved a qualitative leap.This paper engages in the application of digital technology in road and bridge design,to provide technical reference for China’s road and bridge engineering design units,to promote the popularity of Civil3D and other advanced design software in the field of engineering design and development,ultimately contributing to the sustainable development of China’s road and bridge engineering. 展开更多
关键词 Road and bridge design Digital technology Civil3d MODELLING Three-dimensional view Earth calculation
下载PDF
Mathematical Wave Functions and 3D Finite Element Modelling of the Electron and Positron
3
作者 Declan Traill 《Journal of Applied Mathematics and Physics》 2024年第4期1134-1162,共29页
The wave/particle duality of particles in Physics is well known. Particles have properties that uniquely characterize them from one another, such as mass, charge and spin. Charged particles have associated Electric an... The wave/particle duality of particles in Physics is well known. Particles have properties that uniquely characterize them from one another, such as mass, charge and spin. Charged particles have associated Electric and Magnetic fields. Also, every moving particle has a De Broglie wavelength determined by its mass and velocity. This paper shows that all of these properties of a particle can be derived from a single wave function equation for that particle. Wave functions for the Electron and the Positron are presented and principles are provided that can be used to calculate the wave functions of all the fundamental particles in Physics. Fundamental particles such as electrons and positrons are considered to be point particles in the Standard Model of Physics and are not considered to have a structure. This paper demonstrates that they do indeed have structure and that this structure extends into the space around the particle’s center (in fact, they have infinite extent), but with rapidly diminishing energy density with the distance from that center. The particles are formed from Electromagnetic standing waves, which are stable solutions to the Schrödinger and Classical wave equations. This stable structure therefore accounts for both the wave and particle nature of these particles. In fact, all of their properties such as mass, spin and electric charge, can be accounted for from this structure. These particle properties appear to originate from a single point at the center of the wave function structure, in the same sort of way that the Shell theorem of gravity causes the gravity of a body to appear to all originate from a central point. This paper represents the first two fully characterized fundamental particles, with a complete description of their structure and properties, built up from the underlying Electromagnetic waves that comprise these and all fundamental particles. 展开更多
关键词 ELECTRON POSITRON Wave Function Solution Electromagnetic Spin Mass Charge Proof Fundamental Particle Properties Quantum Mechanics Classical Physics Computer 3d Model Schrödinger Equation RMS KLEIN GORDON Electric Magnetic Lorentz Invariant Hertzian Vector Point Potential Field Density Phase Flow Attraction REPULSION Shell Theorem Ehrenfest VIRIAL Normalization Harmonic Oscillator
下载PDF
Loading characteristics of mechanical rib bolts determined through testing and numerical modeling 被引量:5
4
作者 Khaled Mohamed Gamal Rashed Zorica Radakovic-Guzina 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2020年第1期17-24,共8页
Underground coal mines use mechanical bolts in addition to other types of bolts to control the rib deformation and to stabilize the yielded coal ribs.Limited research has been conducted to understand the performance o... Underground coal mines use mechanical bolts in addition to other types of bolts to control the rib deformation and to stabilize the yielded coal ribs.Limited research has been conducted to understand the performance of the mechanical bolts in coal ribs.Researchers from the National Institute for Occupational Safety and Health(NIOSH)conducted this work to understand the loading characteristics of mechanical bolts(stiffness and capacity)installed in coal ribs at five underground coal mines.Standard pull-out tests were performed in this study to define the loading characteristics of mechanical rib bolts.Different installation torques were applied to the tested bolts based on the strength of the coal seam.A typical tri-linear load-deformation response for mechanical bolts was obtained from these tests.It was found that the anchorage capacity depended mainly on the coal strength.Guidelines for modeling mechanical bolts have been developed using the tri-linear load-deformation response.The outcome of this research provides essential data for rib support design. 展开更多
关键词 Coal RIB mechanical BOLT Conventional BOLT Tension BOLT Point-anchored BOLT RIB support PULL-OUT test Numerical modeling FLAC3d
下载PDF
A 3D attention U-Net network and its application in geological model parameterization
5
作者 LI Xiaobo LI Xin +4 位作者 YAN Lin ZHOU Tenghua LI Shunming WANG Jiqiang LI Xinhao 《Petroleum Exploration and Development》 2023年第1期183-190,共8页
To solve the problems of convolutional neural network–principal component analysis(CNN-PCA)in fine description and generalization of complex reservoir geological features,a 3D attention U-Net network was proposed not... To solve the problems of convolutional neural network–principal component analysis(CNN-PCA)in fine description and generalization of complex reservoir geological features,a 3D attention U-Net network was proposed not using a trained C3D video motion analysis model to extract the style of a 3D model,and applied to complement the details of geologic model lost in the dimension reduction of PCA method in this study.The 3D attention U-Net network was applied to a complex river channel sandstone reservoir to test its effects.The results show that compared with CNN-PCA method,the 3D attention U-Net network could better complement the details of geological model lost in the PCA dimension reduction,better reflect the fluid flow features in the original geologic model,and improve history matching results. 展开更多
关键词 reservoir history matching geological model parameterization deep learning attention mechanism 3d U-Net
下载PDF
3D Object Detection with Attention:Shell-Based Modeling
6
作者 Xiaorui Zhang Ziquan Zhao +1 位作者 Wei Sun Qi Cui 《Computer Systems Science & Engineering》 SCIE EI 2023年第7期537-550,共14页
LIDAR point cloud-based 3D object detection aims to sense the surrounding environment by anchoring objects with the Bounding Box(BBox).However,under the three-dimensional space of autonomous driving scenes,the previou... LIDAR point cloud-based 3D object detection aims to sense the surrounding environment by anchoring objects with the Bounding Box(BBox).However,under the three-dimensional space of autonomous driving scenes,the previous object detection methods,due to the pre-processing of the original LIDAR point cloud into voxels or pillars,lose the coordinate information of the original point cloud,slow detection speed,and gain inaccurate bounding box positioning.To address the issues above,this study proposes a new two-stage network structure to extract point cloud features directly by PointNet++,which effectively preserves the original point cloud coordinate information.To improve the detection accuracy,a shell-based modeling method is proposed.It roughly determines which spherical shell the coordinates belong to.Then,the results are refined to ground truth,thereby narrowing the localization range and improving the detection accuracy.To improve the recall of 3D object detection with bounding boxes,this paper designs a self-attention module for 3D object detection with a skip connection structure.Some of these features are highlighted by weighting them on the feature dimensions.After training,it makes the feature weights that are favorable for object detection get larger.Thus,the extracted features are more adapted to the object detection task.Extensive comparison experiments and ablation experiments conducted on the KITTI dataset verify the effectiveness of our proposed method in improving recall and precision. 展开更多
关键词 3d object detection autonomous driving point cloud shell-based modeling self-attention mechanism
下载PDF
The Comparison of Different Degree of Convexity and 3D Modeling of Involute Hyperbolic Arch Dam 被引量:3
7
作者 DU Qi-lu DU Ting-na ZHAO Hai-feng 《Computer Aided Drafting,Design and Manufacturing》 2011年第2期7-12,共6页
Because of good quality of compressive resistance, the hyperbolic arch dam is being increasingly applied to engineering projects. In order to satisfy the needs of compressive resistance under the conditions of high wa... Because of good quality of compressive resistance, the hyperbolic arch dam is being increasingly applied to engineering projects. In order to satisfy the needs of compressive resistance under the conditions of high water pressure, a stress analysis is required for the dam. During the stress analysis process however, due to the complexity of the three-dimensional modeling, it is very hard to form a model. Therefore, the stress analysis process is a barrier for the arch dam. In this article, based on the research of the new line-type arch dam, a mathematical model in different degree of convexity conditions of the dam is established; using the C + + language program, a computer three-dimensional model simulation is realized on AutoCAD. The accurate three-dimensional model is providing a finite element optimization design of the involute hyperbolic arch dam for the next step. 展开更多
关键词 the involute hyperbolic arch dam arch axis upstream arch arc downstream arch arc 3d modelling C program design
下载PDF
THREE-DIMENSIONAL EXACT MODELING OF GEOMETRIC AND MECHANICAL PROPERTIES OF WOVEN COMPOSITES
8
作者 Zhangjian Wu 《Acta Mechanica Solida Sinica》 SCIE EI 2009年第5期479-486,共8页
A formulation for the prediction of the influence of various parameters on the elastic moduli of three-dimensional (3D) orthogonally woven composites has been given. These parameters can be classified into different... A formulation for the prediction of the influence of various parameters on the elastic moduli of three-dimensional (3D) orthogonally woven composites has been given. These parameters can be classified into different groups according to their properties, such as input design and material parameters, structural parameters etc. Some, by their nature, can be well controlled during the design and manufacture of the composite. The composite is assumed to be homogeneous and orthotropic macroscopically. With a selected representative unit cell and the stiffness model developed by author in 2000, the influence of all of these parameters can be determined. Results showing the influence of the main design geometric parameters are presented. They demonstrate that an optimal design is possible for the through-the-thickness stiffness of the composites. The methodology used can be generalized to predict the behavior of other kinds of 3D woven structures. 展开更多
关键词 woven composites 3d modelling mechanical property exact solution
下载PDF
Development Trends in Additive Manufacturing and 3D Printing 被引量:57
9
作者 Bingheng Lu Dichen Li Xiaoyong Tian 《Engineering》 SCIE EI 2015年第1期85-89,共5页
Additive manufacturing and 3D printing tech-nology have been developing rapidly in the last 30 years, and indicate great potential for future development. The promising future of this technology makes its impact on tr... Additive manufacturing and 3D printing tech-nology have been developing rapidly in the last 30 years, and indicate great potential for future development. The promising future of this technology makes its impact on traditional industry unpredictable. 3D printing will propel the revolution of fabrication modes forward, and bring in a new era for customized fabrication by realizing the five "any"s: use of almost any material to fabricate any part, in any quantity and any location, for any industrial field. Innovations in material, design, and fabrication processes will be inspired by the merging of 3D-printing technology and processes with traditional manufacturing processes. Finally, 3D printing will become as valuable for manufacturing industries as equivalent and subtractive manufacturing processes. 展开更多
关键词 additive manufacturing 3d printing fabricationmodes customized fabrication innovative design
下载PDF
The parallel 3D magnetotelluric forward modeling algorithm 被引量:28
10
作者 Tan Handong Tong Tuo Lin Changhong 《Applied Geophysics》 SCIE CSCD 2006年第4期197-202,共6页
The workload of the 3D magnetotelluric forward modeling algorithm is so large that the traditional serial algorithm costs an extremely large compute time. However, the 3D forward modeling algorithm can process the dat... The workload of the 3D magnetotelluric forward modeling algorithm is so large that the traditional serial algorithm costs an extremely large compute time. However, the 3D forward modeling algorithm can process the data in the frequency domain, which is very suitable for parallel computation. With the advantage of MPI and based on an analysis of the flow of the 3D magnetotelluric serial forward algorithm, we suggest the idea of parallel computation and apply it. Three theoretical models are tested and the execution efficiency is compared in different situations. The results indicate that the parallel 3D forward modeling computation is correct and the efficiency is greatly improved. This method is suitable for large size geophysical computations. 展开更多
关键词 Magnetotelluric 3d forward modeling MPI parallel programming design 3d staggered-grid finite difference method parallel algorithm.
下载PDF
Micro Mechanical Model of 3D Woven Composites 被引量:9
11
作者 周储伟 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2005年第1期40-46,共7页
A combined beam model representing the periodicity of the microstructure and micro deformation of 3D woven composites is developed for predicting mechanical properties. The model considers the effects of off axial ten... A combined beam model representing the periodicity of the microstructure and micro deformation of 3D woven composites is developed for predicting mechanical properties. The model considers the effects of off axial tension/compression and bending/shearing couplings as well as the mutual reactions of fiber yarns. The method determining microstructure by using woven parameters is described for a typical 3D woven composite material. An analytical cell, constructed by a minimum periodic section of yarn and interlayer matrix, is adopted. Micro stresses in the cell under in-plane tensile loading are obtained by using the proposed beam model and macro modulus is then obtained by the averaging method. Material tests and a 2D micro FEM analysis are made to evaluate this model. Analyses reveal that micro stress caused by tensile/bending coupling effect is not negligible in the stress analysis. 展开更多
关键词 3d woven composites micro mechanics bending/shear coupling off axial effect combined beam model
下载PDF
Numerical analysis of the failure process of soil-rock mixtures through computed tomography and PFC3D models 被引量:19
12
作者 Yang Ju Huafei Sun +2 位作者 Mingxu Xing Xiaofei Wang Jiangtao Zheng 《International Journal of Coal Science & Technology》 EI 2018年第2期126-141,共16页
Soil-rock mixture (SRM) is a unique type of geomaterial characterized by a heterogeneous composition and a complicated structure. It is intractable for the continuum-based soil and rock mechanics theories to accurat... Soil-rock mixture (SRM) is a unique type of geomaterial characterized by a heterogeneous composition and a complicated structure. It is intractable for the continuum-based soil and rock mechanics theories to accurately characterize and predict the SRM's mechanical properties. This study reports a novel numerical method incorporating microfocus computed tomography and PFC3D codes to probe the deformation and failure processes of SRM. The three-dimensional (3D) PFC models that represent the SRM's complex structures were built. By simulating the entire failure process in PFC3D, the SRM's strength, elastic modulus and crack growth were obtained. The influence of rock ratios on the SRM's strength, deformation and failure processes, as well as its internal mesoscale mechanism, were analyzed. By comparing simulation results with experimental data, it was verified that the 3D PFC models were in good agreement with SRM's real structure and the SRM's compression process, deformation and failure patterns; its intrinsic mesomechanism can be effectively analyzed based on such 3D PFC models. 展开更多
关键词 Soil-rock mixture (SRM) - PFC3d model Three-dimensional structure Microfocus computed tomography (μCT) Failure mechanism Crack growth
下载PDF
Development of 3D Female Breast Model Library for Bra Design 被引量:2
13
作者 王建萍 张渭源 《Journal of Donghua University(English Edition)》 EI CAS 2006年第5期150-153,共4页
As the maturity of female costume concept as well as the social consuming activities, a new and higher requirement is imposed on female underwear design. Human body model is the basic of many applications on 3D garmen... As the maturity of female costume concept as well as the social consuming activities, a new and higher requirement is imposed on female underwear design. Human body model is the basic of many applications on 3D garment CAD. This paper delivered a novel approach for modeling a human body which could be driven by related body dimensions to form a female breast model library based on the free form deformatioll technologies. The 3D female breast shape reserve has a strong potential of being used for bra design, bra flttins, virtual try-on and exhibition to meet "made-tomeasure" demand of the booming bra market in the world. 展开更多
关键词 bra design 3d female breast model free form deformation.
下载PDF
Effect of the mineral spatial distribution heterogeneity on the tensile strength of granite:Insights from PFC3D-GBM numerical analysis 被引量:3
14
作者 Tao Zhang Liyuan Yu +3 位作者 Yuxuan Peng Hongwen Jing Haijian Su Jiangbo Wei 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第5期1144-1160,共17页
The mechanical characteristics of crystalline rocks are affected by the heterogeneity of the spatial distribution of minerals.In this paper,a novel three-dimensional(3D)grain-based model(GBM)based on particle flow cod... The mechanical characteristics of crystalline rocks are affected by the heterogeneity of the spatial distribution of minerals.In this paper,a novel three-dimensional(3D)grain-based model(GBM)based on particle flow code(PFC),i.e.PFC3D-GBM,is proposed.This model can accomplish the grouping of mineral grains at the 3D scale and then filling them.Then,the effect of the position distribution,geometric size,and volume composite of mineral grains on the cracking behaviour and macroscopic properties of granite are examined by conducting Brazilian splitting tests.The numerical results show that when an external load is applied to a sample,force chains will form around each contact,and the orientation distribution of the force chains is uniform,which is independent of the external load level.Furthermore,the number of high-strength force chains is proportional to the external load level,and the main orientation distribution is consistent with the external loading direction.The main orientation of the cracks is vertical to that of the high-strength force chains.The geometric size of the mineral grains controls the mechanical behaviours.As the average grain size increases,the number of transgranular contacts with higher bonding strength in the region connecting both loading points increases.The number of high-strength force chains increases,leading to an increase in the stress concentration value required for the macroscopic failure of the sample.Due to the highest bonding strength,the generation of transgranular cracks in quartz requires a higher concentrated stress value.With increasing volume composition of quartz,the number of transgranular cracks in quartz distributed in the region connecting both loading points increases,which requires many high-strength force chains.The load level rises,leading to an increase in the tensile strength of the numerical sample. 展开更多
关键词 Rock mechanics Tensile strength Spatial distribution of minerals Three-dimensional(3d)grain-based model (GBM) Transgranular contact
下载PDF
3D Product Display Based on Inventor Animation Design 被引量:1
15
作者 CHEN Hua YANG Hao YANG Guanghui 《Instrumentation》 2020年第1期33-41,共9页
With the rapid development of internet technology,some innovative fashion product are increasingly showed in the way of three-dimensional virtual display.Taking fashion jewelry as an example,the virtual 3D display met... With the rapid development of internet technology,some innovative fashion product are increasingly showed in the way of three-dimensional virtual display.Taking fashion jewelry as an example,the virtual 3D display method of product is studied by Inventor which is parametric 3D design software for efficient modeling and animation developed by the Autodesk Company.By discussing the methods of part feature creation and assembly design,the real simulation of the product is carried out.Three-dimensional animation techniques,such as fade animation,components animation and camera animation are used to depict product features and animation effects. 展开更多
关键词 3d Product Display INVENTOR Animation design 3d modeling
下载PDF
Expert System for 3D Collar Intelligent Design
16
作者 刘雁 耿兆丰 《Journal of Donghua University(English Edition)》 EI CAS 2004年第5期27-32,共6页
A method to set up 3D collar prototype is developed in this paper by using the technique of cubic spline and bicubic surface patch. Then the relationship between the parameters of 3D collar prototype and different col... A method to set up 3D collar prototype is developed in this paper by using the technique of cubic spline and bicubic surface patch. Then the relationship between the parameters of 3D collar prototype and different collar styles are studied. Based on the relationship, we can develop some algorithms of transferring style requirements to the parameters value of the collar prototype, and obtain some generation rules for the design of 3D collar style. As such, the knowledge base can be constructed, and the intelligent design system of 3D collar style is built. Using the system, various 3D collar styles can be designed automatically to satisfy various style requirements. 展开更多
关键词 3d modeling intelligent design style knowledge COLLAR
下载PDF
Design and Optimization of Wing Structure for a Fixed-Wing Unmanned Aerial Vehicle (UAV)
17
作者 Jiawen Yu 《Modern Mechanical Engineering》 2018年第4期249-263,共15页
The wing, one of the most important parts of aircraft, always requires sophis-ticated design to increase lift, reduce drag and weight. For modern fixed-wing UAV, extending cruising time is always a requirement for the... The wing, one of the most important parts of aircraft, always requires sophis-ticated design to increase lift, reduce drag and weight. For modern fixed-wing UAV, extending cruising time is always a requirement for the overall design. Designing a most light wing that can match the requirements of work condi-tions is desired. In this work, according to the work conditions, we compare several types of wing and chose beam-type wing. Then we made the detailed design and optimization to reduce the weight of wing. At last, we draw the 3D model for potential realistic production. 展开更多
关键词 WING STRUCTURE OPTIMIZATION 3d MODEL design
下载PDF
DESIGN AND IMPLEMENTATION OF A 3-DIMENSIONAL COMPUTER AIDED GARMENT DESIGN SYSTEM
18
作者 朱辉 萧众 《Journal of China Textile University(English Edition)》 EI CAS 1991年第2期27-33,共7页
A 3-Dimensional computer aided garment design (CAGD) system has been developed andimplemented on a high-performance workstation. We studied various approaches to the func-tional modelling of garment designs for the sy... A 3-Dimensional computer aided garment design (CAGD) system has been developed andimplemented on a high-performance workstation. We studied various approaches to the func-tional modelling of garment designs for the system. According to the characteristic data of a hu-man body, the models of human body and the garment are displayed on the screen, then we canmodify the garment with various styles and different sizes. The system can transform the 3-Dgarment to the 2-D pieces. The system has improved design efficiency. Various potential alterna-tives and improvement of the system have also been studied and explored. 展开更多
关键词 GARMENTS 3d-computer-aided design MODEL MODEL of human BODY MODEL of GARMENT transformation of the 3-D GARMENT to the 2-D pieces
下载PDF
Mechanical Validation of Perfect Tibia 3D Model Using Computed Tomography Scan
19
作者 Ehsan Taheri Behrooz Sepehri Reza Ganji 《Engineering(科研)》 2012年第12期877-880,共4页
In this paper, the Von Mises stresses and stiffnesses measured by experiments on a human cadaveric tibia and composite ones compared to those predicted by a FE model based on the same bone. Modeling of exact geometric... In this paper, the Von Mises stresses and stiffnesses measured by experiments on a human cadaveric tibia and composite ones compared to those predicted by a FE model based on the same bone. Modeling of exact geometrical tibia including cortical and spongy bone using human bone CT scan images and mechanical validating of obtained model, is the aim of this study .The model produced by the current study supplies a tool for simulating mechanical test conditions on human tibia. 展开更多
关键词 Human TIBIA BONE FINITE Element 3d Model mechanical VALIDATION
下载PDF
Computer aided modeling and analysis of a new biomedical and surgical instrument
20
作者 Zheng Li 《Journal of Biomedical Science and Engineering》 2011年第2期119-121,共3页
This paper describes the recent research and development of an endo surgical/biomedical instrument in surgical suture applications for minimally invasive therapy procedure. The newly developed instruments can not only... This paper describes the recent research and development of an endo surgical/biomedical instrument in surgical suture applications for minimally invasive therapy procedure. The newly developed instruments can not only protect the wound during the surgical procedure but also actively help the healing process. The new mechanism design of the surgical instrument aids in better ergonomic design, reliable functionality, and continuous cost reduction in product manufacturing. 3-D modeling technique, functionality analysis, kinematical simulation and computer aided solution have been applied to the instrument design, development and future improvement to meet the specific requirements of minimally invasive surgery procedure. The improved new endo surgical/biomedical instrument can prevent patient’s vessels and tissues from being damaging because the distal move of clips are well controlled without clip drop-off incident. Plus the operational force to form the clip is lower than regular surgical/biomedical instruments due to this special new mechanism design. In addition to the above, the manufacturing and product cost can be decreased because the dimensional tolerance of components, such as clip channel and jaw guide track, can be loose due to this new instrument design. The prototypes of this new endo surgical/biomedical instrument design are analyzed through computer aided modeling and simulation, in order to prove its feasible functionality, reliable performance, and mechanical advantage. All these improved features have also been tested and verified through the prototypes. 展开更多
关键词 HEMOSTASIS ENDOSCOPIC Device COMPUTATIONAL Simulation 3-D modeling mechanical ADVANTAGE
下载PDF
上一页 1 2 13 下一页 到第
使用帮助 返回顶部