The wave/particle duality of particles in Physics is well known. Particles have properties that uniquely characterize them from one another, such as mass, charge and spin. Charged particles have associated Electric an...The wave/particle duality of particles in Physics is well known. Particles have properties that uniquely characterize them from one another, such as mass, charge and spin. Charged particles have associated Electric and Magnetic fields. Also, every moving particle has a De Broglie wavelength determined by its mass and velocity. This paper shows that all of these properties of a particle can be derived from a single wave function equation for that particle. Wave functions for the Electron and the Positron are presented and principles are provided that can be used to calculate the wave functions of all the fundamental particles in Physics. Fundamental particles such as electrons and positrons are considered to be point particles in the Standard Model of Physics and are not considered to have a structure. This paper demonstrates that they do indeed have structure and that this structure extends into the space around the particle’s center (in fact, they have infinite extent), but with rapidly diminishing energy density with the distance from that center. The particles are formed from Electromagnetic standing waves, which are stable solutions to the Schrödinger and Classical wave equations. This stable structure therefore accounts for both the wave and particle nature of these particles. In fact, all of their properties such as mass, spin and electric charge, can be accounted for from this structure. These particle properties appear to originate from a single point at the center of the wave function structure, in the same sort of way that the Shell theorem of gravity causes the gravity of a body to appear to all originate from a central point. This paper represents the first two fully characterized fundamental particles, with a complete description of their structure and properties, built up from the underlying Electromagnetic waves that comprise these and all fundamental particles.展开更多
In city planning managing, the third dimension is becoming a necessity. Using 3D GIS modeling offers a flexible interactive system while providing one of the best visual interpretation of data which supports planning ...In city planning managing, the third dimension is becoming a necessity. Using 3D GIS modeling offers a flexible interactive system while providing one of the best visual interpretation of data which supports planning and decision processes for city planners. As a result, 3D GIS model expresses terrain features in an intuitive way which enhances the management and analysis of a proposed project through 3D visualization. This paper discusses the concept of 3D GIS modeling techniques using a simple procedure to generate a university campus model (real 3D GIS model) which will show the effectiveness of this approach. The 3D GIS model provides access to mapping data to support planning, design and data management. Intelligent GIS models and GIS tools help community planning and apply regional and discipline-specific standards. Integration of GIS spatial data with campus organization helps to improve quality, productivity and asset management. The following study built 3D GIS map and all utility information for AI al-Bayt University campus as an example. The primary objective is to improve data management (e.g., maps, plans, usage of facilities and services) and to develop methods using 3D spatial analysis for specific applications at the university.展开更多
In this paper a novel 3D model retrieval method that employs multi-level spherical moment analysis and relies on voxelization and spherical mapping of the 3D models is proposed. For a given polygon-soup 3D model, firs...In this paper a novel 3D model retrieval method that employs multi-level spherical moment analysis and relies on voxelization and spherical mapping of the 3D models is proposed. For a given polygon-soup 3D model, first a pose normalization step is done to align the model into a canonical coordinate frame so as to define the shape representation with respect to this orientation. Afterward we rasterize its exterior surface into cubical voxel grids, then a series of homocentric spheres with their center superposing the center of the voxel grids cut the voxel grids into several spherical images. Finally moments belonging to each sphere are computed and the moments of all spheres constitute the descriptor of the model. Experiments showed that Euclidean distance based on this kind of feature vector can distinguish different 3D models well and that the 3D model retrieval system based on this arithmetic yields satisfactory performance.展开更多
文摘The wave/particle duality of particles in Physics is well known. Particles have properties that uniquely characterize them from one another, such as mass, charge and spin. Charged particles have associated Electric and Magnetic fields. Also, every moving particle has a De Broglie wavelength determined by its mass and velocity. This paper shows that all of these properties of a particle can be derived from a single wave function equation for that particle. Wave functions for the Electron and the Positron are presented and principles are provided that can be used to calculate the wave functions of all the fundamental particles in Physics. Fundamental particles such as electrons and positrons are considered to be point particles in the Standard Model of Physics and are not considered to have a structure. This paper demonstrates that they do indeed have structure and that this structure extends into the space around the particle’s center (in fact, they have infinite extent), but with rapidly diminishing energy density with the distance from that center. The particles are formed from Electromagnetic standing waves, which are stable solutions to the Schrödinger and Classical wave equations. This stable structure therefore accounts for both the wave and particle nature of these particles. In fact, all of their properties such as mass, spin and electric charge, can be accounted for from this structure. These particle properties appear to originate from a single point at the center of the wave function structure, in the same sort of way that the Shell theorem of gravity causes the gravity of a body to appear to all originate from a central point. This paper represents the first two fully characterized fundamental particles, with a complete description of their structure and properties, built up from the underlying Electromagnetic waves that comprise these and all fundamental particles.
文摘In city planning managing, the third dimension is becoming a necessity. Using 3D GIS modeling offers a flexible interactive system while providing one of the best visual interpretation of data which supports planning and decision processes for city planners. As a result, 3D GIS model expresses terrain features in an intuitive way which enhances the management and analysis of a proposed project through 3D visualization. This paper discusses the concept of 3D GIS modeling techniques using a simple procedure to generate a university campus model (real 3D GIS model) which will show the effectiveness of this approach. The 3D GIS model provides access to mapping data to support planning, design and data management. Intelligent GIS models and GIS tools help community planning and apply regional and discipline-specific standards. Integration of GIS spatial data with campus organization helps to improve quality, productivity and asset management. The following study built 3D GIS map and all utility information for AI al-Bayt University campus as an example. The primary objective is to improve data management (e.g., maps, plans, usage of facilities and services) and to develop methods using 3D spatial analysis for specific applications at the university.
基金Project (No. 60573146) supported by the National Natural Science Foundation of China
文摘In this paper a novel 3D model retrieval method that employs multi-level spherical moment analysis and relies on voxelization and spherical mapping of the 3D models is proposed. For a given polygon-soup 3D model, first a pose normalization step is done to align the model into a canonical coordinate frame so as to define the shape representation with respect to this orientation. Afterward we rasterize its exterior surface into cubical voxel grids, then a series of homocentric spheres with their center superposing the center of the voxel grids cut the voxel grids into several spherical images. Finally moments belonging to each sphere are computed and the moments of all spheres constitute the descriptor of the model. Experiments showed that Euclidean distance based on this kind of feature vector can distinguish different 3D models well and that the 3D model retrieval system based on this arithmetic yields satisfactory performance.