期刊文献+
共找到317篇文章
< 1 2 16 >
每页显示 20 50 100
Estimation of the anisotropy of hydraulic conductivity through 3D fracture networks using the directional geological entropy 被引量:1
1
作者 Chuangbing Zhou Zuyang Ye +2 位作者 Chi Yao Xincheng Fan Feng Xiong 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第2期137-148,共12页
With an extension of the geological entropy concept in porous media,the approach called directional entrogram is applied to link hydraulic behavior to the anisotropy of the 3D fracture networks.A metric called directi... With an extension of the geological entropy concept in porous media,the approach called directional entrogram is applied to link hydraulic behavior to the anisotropy of the 3D fracture networks.A metric called directional entropic scale is used to measure the anisotropy of spatial order in different directions.Compared with the traditional connectivity indexes based on the statistics of fracture geometry,the directional entropic scale is capable to quantify the anisotropy of connectivity and hydraulic conductivity in heterogeneous 3D fracture networks.According to the numerical analysis of directional entrogram and fluid flow in a number of the 3D fracture networks,the hydraulic conductivities and entropic scales in different directions both increase with spatial order(i.e.,trace length decreasing and spacing increasing)and are independent of the dip angle.As a result,the nonlinear correlation between the hydraulic conductivities and entropic scales from different directions can be unified as quadratic polynomial function,which can shed light on the anisotropic effect of spatial order and global entropy on the heterogeneous hydraulic behaviors. 展开更多
关键词 3d fracture network Geological entropy directional entropic scale ANISOTROPY Hydraulic conductivity
下载PDF
Numerical Study of the Biomechanical Behavior of a 3D Printed Polymer Esophageal Stent in the Esophagus by BP Neural Network Algorithm 被引量:1
2
作者 Guilin Wu Shenghua Huang +7 位作者 Tingting Liu Zhuoni Yang Yuesong Wu Guihong Wei Peng Yu Qilin Zhang Jun Feng Bo Zeng 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第3期2709-2725,共17页
Esophageal disease is a common disorder of the digestive system that can severely affect the quality of life andprognosis of patients. Esophageal stenting is an effective treatment that has been widely used in clinica... Esophageal disease is a common disorder of the digestive system that can severely affect the quality of life andprognosis of patients. Esophageal stenting is an effective treatment that has been widely used in clinical practice.However, esophageal stents of different types and parameters have varying adaptability and effectiveness forpatients, and they need to be individually selected according to the patient’s specific situation. The purposeof this study was to provide a reference for clinical doctors to choose suitable esophageal stents. We used 3Dprinting technology to fabricate esophageal stents with different ratios of thermoplastic polyurethane (TPU)/(Poly-ε-caprolactone) PCL polymer, and established an artificial neural network model that could predict the radial forceof esophageal stents based on the content of TPU, PCL and print parameter. We selected three optimal ratios formechanical performance tests and evaluated the biomechanical effects of different ratios of stents on esophagealimplantation, swallowing, and stent migration processes through finite element numerical simulation and in vitrosimulation tests. The results showed that different ratios of polymer stents had different mechanical properties,affecting the effectiveness of stent expansion treatment and the possibility of postoperative complications of stentimplantation. 展开更多
关键词 Finite element method 3d printing polymer esophageal stent artificial neural network
下载PDF
Design,progress and challenges of 3D carbon-based thermally conductive networks
3
作者 JING Yuan LIU Han-qing +2 位作者 ZHOU Feng DAI Fang-na WU Zhong-shuai 《新型炭材料(中英文)》 SCIE EI CAS CSCD 北大核心 2024年第5期844-871,共28页
The advent of the 5G era has stimulated the rapid development of high power electronics with dense integration.Three-dimensional(3D)thermally conductive networks,possessing high thermal and electrical conductivities a... The advent of the 5G era has stimulated the rapid development of high power electronics with dense integration.Three-dimensional(3D)thermally conductive networks,possessing high thermal and electrical conductivities and many different structures,are regarded as key materials to improve the performance of electronic devices.We provide a critical overview of carbonbased 3D thermally conductive networks,emphasizing their preparation-structure-property relationships and their applications in different scenarios.A detailed discussion of the microscopic principles of thermal conductivity is provided,which is crucial for increasing it.This is followed by an in-depth account of the construction of 3D networks using different carbon materials,such as graphene,carbon foam,and carbon nanotubes.Techniques for the assembly of two-dimensional graphene into 3D networks and their effects on thermal conductivity are emphasized.Finally,the existing challenges and future prospects for 3D carbon-based thermally conductive networks are discussed. 展开更多
关键词 Carbon material 3d network GRAPHENE Thermal conductivity Heat transfer
下载PDF
3D Road Network Modeling and Road Structure Recognition in Internet of Vehicles
4
作者 Dun Cao Jia Ru +3 位作者 Jian Qin Amr Tolba Jin Wang Min Zhu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第2期1365-1384,共20页
Internet of Vehicles (IoV) is a new system that enables individual vehicles to connect with nearby vehicles,people, transportation infrastructure, and networks, thereby realizing amore intelligent and efficient transp... Internet of Vehicles (IoV) is a new system that enables individual vehicles to connect with nearby vehicles,people, transportation infrastructure, and networks, thereby realizing amore intelligent and efficient transportationsystem. The movement of vehicles and the three-dimensional (3D) nature of the road network cause the topologicalstructure of IoV to have the high space and time complexity.Network modeling and structure recognition for 3Droads can benefit the description of topological changes for IoV. This paper proposes a 3Dgeneral roadmodel basedon discrete points of roads obtained from GIS. First, the constraints imposed by 3D roads on moving vehicles areanalyzed. Then the effects of road curvature radius (Ra), longitudinal slope (Slo), and length (Len) on speed andacceleration are studied. Finally, a general 3D road network model based on road section features is established.This paper also presents intersection and road section recognition methods based on the structural features ofthe 3D road network model and the road features. Real GIS data from a specific region of Beijing is adopted tocreate the simulation scenario, and the simulation results validate the general 3D road network model and therecognitionmethod. Therefore, thiswork makes contributions to the field of intelligent transportation by providinga comprehensive approach tomodeling the 3Droad network and its topological changes in achieving efficient trafficflowand improved road safety. 展开更多
关键词 Internet of vehicles road networks 3d road model structure recognition GIS
下载PDF
SGT-Net: A Transformer-Based Stratified Graph Convolutional Network for 3D Point Cloud Semantic Segmentation
5
作者 Suyi Liu Jianning Chi +2 位作者 Chengdong Wu Fang Xu Xiaosheng Yu 《Computers, Materials & Continua》 SCIE EI 2024年第6期4471-4489,共19页
In recent years,semantic segmentation on 3D point cloud data has attracted much attention.Unlike 2D images where pixels distribute regularly in the image domain,3D point clouds in non-Euclidean space are irregular and... In recent years,semantic segmentation on 3D point cloud data has attracted much attention.Unlike 2D images where pixels distribute regularly in the image domain,3D point clouds in non-Euclidean space are irregular and inherently sparse.Therefore,it is very difficult to extract long-range contexts and effectively aggregate local features for semantic segmentation in 3D point cloud space.Most current methods either focus on local feature aggregation or long-range context dependency,but fail to directly establish a global-local feature extractor to complete the point cloud semantic segmentation tasks.In this paper,we propose a Transformer-based stratified graph convolutional network(SGT-Net),which enlarges the effective receptive field and builds direct long-range dependency.Specifically,we first propose a novel dense-sparse sampling strategy that provides dense local vertices and sparse long-distance vertices for subsequent graph convolutional network(GCN).Secondly,we propose a multi-key self-attention mechanism based on the Transformer to further weight augmentation for crucial neighboring relationships and enlarge the effective receptive field.In addition,to further improve the efficiency of the network,we propose a similarity measurement module to determine whether the neighborhood near the center point is effective.We demonstrate the validity and superiority of our method on the S3DIS and ShapeNet datasets.Through ablation experiments and segmentation visualization,we verify that the SGT model can improve the performance of the point cloud semantic segmentation. 展开更多
关键词 3d point cloud semantic segmentation long-range contexts global-local feature graph convolutional network dense-sparse sampling strategy
下载PDF
3D Ice Shape Description Method Based on BLSOM Neural Network
6
作者 ZHU Bailiu ZUO Chenglin 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2024年第S01期70-80,共11页
When checking the ice shape calculation software,its accuracy is judged based on the proximity between the calculated ice shape and the typical test ice shape.Therefore,determining the typical test ice shape becomes t... When checking the ice shape calculation software,its accuracy is judged based on the proximity between the calculated ice shape and the typical test ice shape.Therefore,determining the typical test ice shape becomes the key task of the icing wind tunnel tests.In the icing wind tunnel test of the tail wing model of a large amphibious aircraft,in order to obtain accurate typical test ice shape,the Romer Absolute Scanner is used to obtain the 3D point cloud data of the ice shape on the tail wing model.Then,the batch-learning self-organizing map(BLSOM)neural network is used to obtain the 2D average ice shape along the model direction based on the 3D point cloud data of the ice shape,while its tolerance band is calculated using the probabilistic statistical method.The results show that the combination of 2D average ice shape and its tolerance band can represent the 3D characteristics of the test ice shape effectively,which can be used as the typical test ice shape for comparative analysis with the calculated ice shape. 展开更多
关键词 icing wind tunnel test ice shape batch-learning self-organizing map neural network 3d point cloud
下载PDF
Review of Artificial Intelligence for Oil and Gas Exploration: Convolutional Neural Network Approaches and the U-Net 3D Model
7
作者 Weiyan Liu 《Open Journal of Geology》 CAS 2024年第4期578-593,共16页
Deep learning, especially through convolutional neural networks (CNN) such as the U-Net 3D model, has revolutionized fault identification from seismic data, representing a significant leap over traditional methods. Ou... Deep learning, especially through convolutional neural networks (CNN) such as the U-Net 3D model, has revolutionized fault identification from seismic data, representing a significant leap over traditional methods. Our review traces the evolution of CNN, emphasizing the adaptation and capabilities of the U-Net 3D model in automating seismic fault delineation with unprecedented accuracy. We find: 1) The transition from basic neural networks to sophisticated CNN has enabled remarkable advancements in image recognition, which are directly applicable to analyzing seismic data. The U-Net 3D model, with its innovative architecture, exemplifies this progress by providing a method for detailed and accurate fault detection with reduced manual interpretation bias. 2) The U-Net 3D model has demonstrated its superiority over traditional fault identification methods in several key areas: it has enhanced interpretation accuracy, increased operational efficiency, and reduced the subjectivity of manual methods. 3) Despite these achievements, challenges such as the need for effective data preprocessing, acquisition of high-quality annotated datasets, and achieving model generalization across different geological conditions remain. Future research should therefore focus on developing more complex network architectures and innovative training strategies to refine fault identification performance further. Our findings confirm the transformative potential of deep learning, particularly CNN like the U-Net 3D model, in geosciences, advocating for its broader integration to revolutionize geological exploration and seismic analysis. 展开更多
关键词 deep Learning Convolutional Neural networks (CNN) Seismic Fault Identification U-Net 3d Model Geological Exploration
下载PDF
Mural Anomaly Region Detection Algorithm Based on Hyperspectral Multiscale Residual Attention Network
8
作者 Bolin Guo Shi Qiu +1 位作者 Pengchang Zhang Xingjia Tang 《Computers, Materials & Continua》 SCIE EI 2024年第10期1809-1833,共25页
Mural paintings hold significant historical information and possess substantial artistic and cultural value.However,murals are inevitably damaged by natural environmental factors such as wind and sunlight,as well as b... Mural paintings hold significant historical information and possess substantial artistic and cultural value.However,murals are inevitably damaged by natural environmental factors such as wind and sunlight,as well as by human activities.For this reason,the study of damaged areas is crucial for mural restoration.These damaged regions differ significantly from undamaged areas and can be considered abnormal targets.Traditional manual visual processing lacks strong characterization capabilities and is prone to omissions and false detections.Hyperspectral imaging can reflect the material properties more effectively than visual characterization methods.Thus,this study employs hyperspectral imaging to obtain mural information and proposes a mural anomaly detection algorithm based on a hyperspectral multi-scale residual attention network(HM-MRANet).The innovations of this paper include:(1)Constructing mural painting hyperspectral datasets.(2)Proposing a multi-scale residual spectral-spatial feature extraction module based on a 3D CNN(Convolutional Neural Networks)network to better capture multiscale information and improve performance on small-sample hyperspectral datasets.(3)Proposing the Enhanced Residual Attention Module(ERAM)to address the feature redundancy problem,enhance the network’s feature discrimination ability,and further improve abnormal area detection accuracy.The experimental results show that the AUC(Area Under Curve),Specificity,and Accuracy of this paper’s algorithm reach 85.42%,88.84%,and 87.65%,respectively,on this dataset.These results represent improvements of 3.07%,1.11%and 2.68%compared to the SSRN algorithm,demonstrating the effectiveness of this method for mural anomaly detection. 展开更多
关键词 MURALS anomaly detection HYPERSPECTRAL 3d CNN(Convolutional Neural networks) residual network
下载PDF
Regression Method for Rail Fastener Tightness Based on Center-Line Projection Distance Feature and Neural Network
9
作者 Yuanhang Wang Duxin Liu +4 位作者 Sheng Guo Yifan Wu Jing Liu Wei Li Hongjie Wang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第2期356-371,共16页
In the railway system,fasteners have the functions of damping,maintaining the track distance,and adjusting the track level.Therefore,routine maintenance and inspection of fasteners are important to ensure the safe ope... In the railway system,fasteners have the functions of damping,maintaining the track distance,and adjusting the track level.Therefore,routine maintenance and inspection of fasteners are important to ensure the safe operation of track lines.Currently,assessment methods for fastener tightness include manual observation,acoustic wave detection,and image detection.There are limitations such as low accuracy and efficiency,easy interference and misjudgment,and a lack of accurate,stable,and fast detection methods.Aiming at the small deformation characteristics and large elastic change of fasteners from full loosening to full tightening,this study proposes high-precision surface-structured light technology for fastener detection and fastener deformation feature extraction based on the center-line projection distance and a fastener tightness regression method based on neural networks.First,the method uses a 3D camera to obtain a fastener point cloud and then segments the elastic rod area based on the iterative closest point algorithm registration.Principal component analysis is used to calculate the normal vector of the segmented elastic rod surface and extract the point on the centerline of the elastic rod.The point is projected onto the upper surface of the bolt to calculate the projection distance.Subsequently,the mapping relationship between the projection distance sequence and fastener tightness is established,and the influence of each parameter on the fastener tightness prediction is analyzed.Finally,by setting up a fastener detection scene in the track experimental base,collecting data,and completing the algorithm verification,the results showed that the deviation between the fastener tightness regression value obtained after the algorithm processing and the actual measured value RMSE was 0.2196 mm,which significantly improved the effect compared with other tightness detection methods,and realized an effective fastener tightness regression. 展开更多
关键词 Railway system Fasteners Tightness inspection Neural network regression 3d point cloud processing
下载PDF
RWNeRF:Robust Watermarking Scheme for Neural Radiance Fields Based on Invertible Neural Networks
10
作者 Wenquan Sun Jia Liu +2 位作者 Weina Dong Lifeng Chen Fuqiang Di 《Computers, Materials & Continua》 SCIE EI 2024年第9期4065-4083,共19页
As neural radiance fields continue to advance in 3D content representation,the copyright issues surrounding 3D models oriented towards implicit representation become increasingly pressing.In response to this challenge... As neural radiance fields continue to advance in 3D content representation,the copyright issues surrounding 3D models oriented towards implicit representation become increasingly pressing.In response to this challenge,this paper treats the embedding and extraction of neural radiance field watermarks as inverse problems of image transformations and proposes a scheme for protecting neural radiance field copyrights using invertible neural network watermarking.Leveraging 2D image watermarking technology for 3D scene protection,the scheme embeds watermarks within the training images of neural radiance fields through the forward process in invertible neural networks and extracts them from images rendered by neural radiance fields through the reverse process,thereby ensuring copyright protection for both the neural radiance fields and associated 3D scenes.However,challenges such as information loss during rendering processes and deliberate tampering necessitate the design of an image quality enhancement module to increase the scheme’s robustness.This module restores distorted images through neural network processing before watermark extraction.Additionally,embedding watermarks in each training image enables watermark information extraction from multiple viewpoints.Our proposed watermarking method achieves a PSNR(Peak Signal-to-Noise Ratio)value exceeding 37 dB for images containing watermarks and 22 dB for recovered watermarked images,as evaluated on the Lego,Hotdog,and Chair datasets,respectively.These results demonstrate the efficacy of our scheme in enhancing copyright protection. 展开更多
关键词 Neural radiance fields 3d scene ROBUST watermarking invertible neural networks
下载PDF
Sacrificial microgel‑laden bioink‑enabled 3D bioprinting of mesoscale pore networks 被引量:8
11
作者 Lei Shao Qing Gao +5 位作者 Chaoqi Xie Jianzhong Fu Meixiang Xiang Zhenjie Liu Liulin Xiang Yong He 《Bio-Design and Manufacturing》 CSCD 2020年第1期30-39,共10页
Three-dimensional(3D)bioprinting is a powerful approach that enables the fabrication of 3D tissue constructs that retain complex biological functions.However,the dense hydrogel networks that form after the gelation of... Three-dimensional(3D)bioprinting is a powerful approach that enables the fabrication of 3D tissue constructs that retain complex biological functions.However,the dense hydrogel networks that form after the gelation of bioinks often restrict the migration and proliferation of encapsulated cells.Herein,a sacrificial microgel-laden bioink strategy was designed for directly bioprinting constructs with mesoscale pore networks(MPNs)for enhancing nutrient delivery and cell growth.The sacrificial microgel-laden bioink,which contains cell/gelatin methacryloyl(GelMA)mixture and gelled gelatin microgel,is first thermo-crosslinked to fabricate temporary predesigned cell-laden constructs by extrusion bioprinting onto a cold platform.Then,the construct is permanently stabilized through photo-crosslinking of GelMA.The MPNs inside the printed constructs are formed after subsequent dissolution of the gelatin microgel.These MPNs allowed for effective oxygen/nutrient diffusion,facilitating the generation of bioactive tissues.Specifically,osteoblast and human umbilical vein endothelial cells encapsulated in the bioprinted large-scale constructs(≥1 cm)with MPNs showed enhanced bioactivity during culture.The 3D bioprinting strategy based on the sacrificial microgel-laden bioink provided a facile method to facilitate formation of complex tissue constructs with MPNs and set a foundation for future optimization of MPN-based tissue constructs with applications in diverse areas of tissue engineering. 展开更多
关键词 Sacrificial microgel Gelatin methacryloyl(GelMA) 3d bioprinting Mesoscale pore networks(MPNs) Tissue engineering
下载PDF
CurveNet:Curvature-Based Multitask Learning Deep Networks for 3D Object Recognition 被引量:2
12
作者 A.A.M.Muzahid Wanggen Wan +2 位作者 Ferdous Sohel Lianyao Wu Li Hou 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2021年第6期1177-1187,共11页
In computer vision fields,3D object recognition is one of the most important tasks for many real-world applications.Three-dimensional convolutional neural networks(CNNs)have demonstrated their advantages in 3D object ... In computer vision fields,3D object recognition is one of the most important tasks for many real-world applications.Three-dimensional convolutional neural networks(CNNs)have demonstrated their advantages in 3D object recognition.In this paper,we propose to use the principal curvature directions of 3D objects(using a CAD model)to represent the geometric features as inputs for the 3D CNN.Our framework,namely CurveNet,learns perceptually relevant salient features and predicts object class labels.Curvature directions incorporate complex surface information of a 3D object,which helps our framework to produce more precise and discriminative features for object recognition.Multitask learning is inspired by sharing features between two related tasks,where we consider pose classification as an auxiliary task to enable our CurveNet to better generalize object label classification.Experimental results show that our proposed framework using curvature vectors performs better than voxels as an input for 3D object classification.We further improved the performance of CurveNet by combining two networks with both curvature direction and voxels of a 3D object as the inputs.A Cross-Stitch module was adopted to learn effective shared features across multiple representations.We evaluated our methods using three publicly available datasets and achieved competitive performance in the 3D object recognition task. 展开更多
关键词 3d shape analysis convolutional neural network dNNs object classification volumetric CNN
下载PDF
Research on BIM Model Reshaping Method Based on 3D Point Cloud Recognition
13
作者 SHI Jin-yu YU Xian-feng +1 位作者 SI Zhan-jun ZHANG Ying-xue 《印刷与数字媒体技术研究》 CAS 北大核心 2024年第4期125-135,共11页
In view of the limitations of traditional measurement methods in the field of building information,such as complex operation,low timeliness and poor accuracy,a new way of combining three-dimensional scanning technolog... In view of the limitations of traditional measurement methods in the field of building information,such as complex operation,low timeliness and poor accuracy,a new way of combining three-dimensional scanning technology and BIM(Building Information Modeling)model was discussed.Focused on the efficient acquisition of building geometric information using the fast-developing 3D point cloud technology,an improved deep learning-based 3D point cloud recognition method was proposed.The method optimised the network structure based on RandLA-Net to adapt to the large-scale point cloud processing requirements,while the semantic and instance features of the point cloud were integrated to significantly improve the recognition accuracy and provide a precise basis for BIM model remodeling.In addition,a visual BIM model generation system was developed,which systematically transformed the point cloud recognition results into BIM component parameters,automatically constructed BIM models,and promoted the open sharing and secondary development of models.The research results not only effectively promote the automation process of converting 3D point cloud data to refined BIM models,but also provide important technical support for promoting building informatisation and accelerating the construction of smart cities,showing a wide range of application potential and practical value. 展开更多
关键词 3d point cloud RandLA-Net network BIM model OSG engine
下载PDF
Quantification of 3D macropore networks in forest soils in Touzhai valley(Yunnan,China)using X-ray computed tomography and image analysis 被引量:2
14
作者 ZHANG Jia-ming XU Ze-min +2 位作者 LI Feng HOU Ru-ji REN Zhe 《Journal of Mountain Science》 SCIE CSCD 2017年第3期474-491,共18页
The three dimensional (3D) geometry of soil macropores largely controls preferential flow, which is a significant infiltrating mechanism for rainfall in forest soils and affects slope stability. However, detailed st... The three dimensional (3D) geometry of soil macropores largely controls preferential flow, which is a significant infiltrating mechanism for rainfall in forest soils and affects slope stability. However, detailed studies on the 3D geometry of macropore networks in forest soils are rare. The intense rainfall-triggered potentially unstable slopes were threatening the villages at the downstream of Touzhai valley (Yunnan, China). We visualized and quantified the 3D macropore networks in undisturbed soil columns (Histosols) taken from a forest hillslope in Touzhai valley, and compared them with those in agricultural soils (corn and soybean in USA; barley, fodder beet and red fescue in Denmark) and grassland soils in USA. We took two large undisturbed soil columns (250 mm^25o mmxsoo mm), and scanned the soil columns at in-situ soil water content conditions using X-ray computed tomography at a voxel resolution of 0.945 × 0.945 × 1.500o mm^3. After reconstruction and visualization, we quantified the characteristics of macropore networks. In the studied forest soils, the main types of maeropores were root channels, inter-aggregate voids, maeropores without knowing origin, root-soil interfaee and stone-soil interface. While maeropore networks tend to be more eomplex, larger, deeper and longer. The forest soils have high maeroporosity, total maeropore wall area density, node density, and large maeropore volume, hydraulie radius, mean maeropore length, angle, and low tortuosity. The findings suggest that maeropore networks in the forest soils have high inter- connectivity, vertical continuity, linearity and less vertically oriented. 展开更多
关键词 Slope stability Touzhai valley Rainfall infiltration Forest soils X-ray computed tomography 3d macropore networks
下载PDF
Ex vivo 3D osteocyte network construction with primary murine bone cells 被引量:2
15
作者 Qiaoling Sun Yexin Gu +3 位作者 Wenting Zhang Leah Dziopa Jenny Zilberberg Woo Lee 《Bone Research》 SCIE CAS CSCD 2015年第3期152-163,共12页
Osteocytes reside as three-dimensionally(3D) networked cells in the lacunocanalicular structure of bones and regulate bone and mineral homeostasis. Despite of their important regulatory roles, in vitro studies of os... Osteocytes reside as three-dimensionally(3D) networked cells in the lacunocanalicular structure of bones and regulate bone and mineral homeostasis. Despite of their important regulatory roles, in vitro studies of osteocytes have been challenging because:(1) current cell lines do not sufficiently represent the phenotypic features of mature osteocytes and(2) primary cells rapidly differentiate to osteoblasts upon isolation. In this study, we used a 3D perfusion culture approach to:(1) construct the 3D cellular network of primary murine osteocytes by biomimetic assembly with microbeads and(2) reproduce ex vivo the phenotype of primary murine osteocytes, for the first time to our best knowledge. In order to enable 3D construction with a sufficient number of viable cells, we used a proliferated osteoblastic population of healthy cells outgrown from digested bone chips. The diameter of microbeads was controlled to:(1) distribute and entrap cells within the interstitial spaces between the microbeads and(2) maintain average cell-to-cell distance to be about 19 mm. The entrapped cells formed a 3D cellular network by extending and connecting their processes through openings between the microbeads. Also, with increasing culture time, the entrapped cells exhibited the characteristic gene expressions(SOST and FGF23) and nonproliferative behavior of mature osteocytes. In contrast, 2D-cultured cells continued their osteoblastic differentiation and proliferation. This 3D biomimetic approach is expected to provide a new means of:(1) studying flow-induced shear stress on the mechanotransduction function of primary osteocytes,(2) studying physiological functions of 3D-networked osteocytes with in vitro convenience,and(3) developing clinically relevant human bone disease models. 展开更多
关键词 CELL FIGURE Ex vivo 3d osteocyte network construction with primary murine bone cells BONE
下载PDF
Biomass-Derived Nitrogen and Sulfur Co-Doped 3D Carbon Networks with Interconnected Meso-Microporous Structure for High-Performance Supercapacitors 被引量:1
16
作者 Zhu Jiajia Hao Xiaodong +3 位作者 Wang Jie Guo Hongshuai Dou Hui Zhang Xiaogang 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2018年第4期590-602,共13页
Three-dimensional(3D)carbon networks have been explored as promising capacitive materials thanks to their unique structural features such as large ion-accessible surface area and interconnected porous networks,thus en... Three-dimensional(3D)carbon networks have been explored as promising capacitive materials thanks to their unique structural features such as large ion-accessible surface area and interconnected porous networks,thus enhancing both ions and electrons transport.Here,sustainable bacterial cellulose(BC)is used both precursor and template for facile synthesis of free-standing N,S-codoped 3Dcarbon networks(a-NSC)by the pyrolysis and activation of polyrhodanine coated BC.The synthesized a-NSC shows highly conductive interconnected porous networks(24S·cm^(-1)),large surface area(1 420m^2·g^(-1))with hierarchical meso-microporosity,and high-level heteroatoms codoping(N:3.1%in atom,S:3.2%in atom).Benefitting from these,a-NSC as binder-free electrode exhibits an ultrahigh specific capacitance of 340F·g^(-1)(24μF·cm^(-2))at the current density of 0.5A·g^(-1)in 6MKOH electrolyte,high-rate capability(71%at 20A·g^(-1))and excellent cycle stability.Furthermore,the assembled symmetrical supercapacitor displays a much short time constant of 0.35sin 1MTEABF4/AN electrolyte,obtaining a maximum energy density of 32.1W·h·kg^(-1 )at power density of 637W·kg^(-1).The in situ multi-heteroatoms doping enables biocellulose-derived carbon networks to exploit its full potentials in energy storage applications,which can be extended to other dimensional carbon nanostructures. 展开更多
关键词 bacterial cellulose 3d carbon networks FREE-STANdING N S-codoping SUPERCAPACITORS
下载PDF
Automatic detection of breast lesions in automated 3D breast ultrasound with cross-organ transfer learning
17
作者 Lingyun BAO Zhengrui HUANG +7 位作者 Zehui LIN Yue SUN Hui CHEN You LI Zhang LI Xiaochen YUAN Lin XU Tao TAN 《虚拟现实与智能硬件(中英文)》 EI 2024年第3期239-251,共13页
Background Deep convolutional neural networks have garnered considerable attention in numerous machine learning applications,particularly in visual recognition tasks such as image and video analyses.There is a growing... Background Deep convolutional neural networks have garnered considerable attention in numerous machine learning applications,particularly in visual recognition tasks such as image and video analyses.There is a growing interest in applying this technology to diverse applications in medical image analysis.Automated three dimensional Breast Ultrasound is a vital tool for detecting breast cancer,and computer-assisted diagnosis software,developed based on deep learning,can effectively assist radiologists in diagnosis.However,the network model is prone to overfitting during training,owing to challenges such as insufficient training data.This study attempts to solve the problem caused by small datasets and improve model detection performance.Methods We propose a breast cancer detection framework based on deep learning(a transfer learning method based on cross-organ cancer detection)and a contrastive learning method based on breast imaging reporting and data systems(BI-RADS).Results When using cross organ transfer learning and BIRADS based contrastive learning,the average sensitivity of the model increased by a maximum of 16.05%.Conclusion Our experiments have demonstrated that the parameters and experiences of cross-organ cancer detection can be mutually referenced,and contrastive learning method based on BI-RADS can improve the detection performance of the model. 展开更多
关键词 Breast ultrasound Automated 3d breast ultrasound Breast cancers deep learning Transfer learning Convolutional neural networks Computer-aided diagnosis Cross organ learning
下载PDF
Metal–Oleate Complex?Derived Bimetallic Oxides Nanoparticles Encapsulated in 3D Graphene Networks as Anodes for Efficient Lithium Storage with Pseudocapacitance 被引量:1
18
作者 Yingying Cao Kaiming Geng +6 位作者 Hongbo Geng Huixiang Ang Jie Pei Yayuan Liu Xueqin Cao Junwei Zheng Hongwei Gu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2019年第1期250-263,共14页
In this manuscript, we have demonstrated the delicate design and synthesis of bimetallic oxides nanoparticles derived from metal–oleate complex embedded in 3D graphene networks(MnO/CoMn_2O_4  GN), as an anode mater... In this manuscript, we have demonstrated the delicate design and synthesis of bimetallic oxides nanoparticles derived from metal–oleate complex embedded in 3D graphene networks(MnO/CoMn_2O_4  GN), as an anode material for lithium ion batteries. The novel synthesis of the MnO/CoMn_2O_4  GN consists of thermal decomposition of metal–oleate complex containing cobalt and manganese metals and oleate ligand, forming bimetallic oxides nanoparticles, followed by a selfassembly route with reduced graphene oxides. The MnO/CoMn_2O_4  GN composite, with a unique architecture of bimetallic oxides nanoparticles encapsulated in 3D graphene networks, rationally integrates several benefits including shortening the di usion path of Li^+ ions, improving electrical conductivity and mitigating volume variation during cycling. Studies show that the electrochemical reaction processes of MnO/Co Mn_2O_4  GN electrodes are dominated by the pseudocapacitive behavior, leading to fast Li^+ charge/discharge reactions. As a result, the MnO/CoMn_2O_4  GN manifests high initial specific capacity, stable cycling performance, and excellent rate capability. 展开更多
关键词 Metal–oleate complex Bimetallic oxides NANOPARTICLES Porous architecture 3d GRAPHENE networkS Lithium ion batteries
下载PDF
Static dissolution-induced 3D pore network modification and its impact on critical pore attributes of carbonate rocks 被引量:2
19
作者 ANDRIAMIHAJA Spariharijaona PADMANABHAN Eswaran +1 位作者 BEN-AWUAH Joel SOKKALINGAM Rajalingam 《Petroleum Exploration and Development》 2019年第2期374-383,共10页
To determine the effect of dissolution on pore network development in carbonate rocks, dissolution experiments, X-Ray microtomography, and thin section analysis were conducted on argillaceous limestone and grain limes... To determine the effect of dissolution on pore network development in carbonate rocks, dissolution experiments, X-Ray microtomography, and thin section analysis were conducted on argillaceous limestone and grain limestone samples at different temperatures and constant pH, HCl concentration. The relationship between Ca^(2+) concentration and time was revealed through the experiments; pore size distribution before and after dissolution indicate that there is no correlation between the temperature and pore size variation, but pore size variation in grain limestone is more significant, indicating that the variation is mainly controlled by the heterogeneity of the rock itself(initial porosity and permeability) and the abundance of unstable minerals(related to crystal shape, size and mineral type). At different temperatures, the two kinds of carbonate rocks had very small variation in pore throat radius from 0.003 mm to 0.040 mm, which is 1.3 to 3.5 times more, 1.7 on average of the original pore throat radius. Their pore throat length varied from 0.05 mm to 0.35 mm. The minor changes in the pore throat radius, length and connectivity brought big changes to permeability of up to 1 000×10^(-3) μm^2. 展开更多
关键词 3d PORE networks CARBONATE ROCKS PORE structure MUdSTONE grainstone ACIdIZING dissolution X-Ray micro tomography
下载PDF
Integrating artificial neural networks and geostatistics for optimum 3D geological block modeling in mineral reserve estimation:A case study 被引量:2
20
作者 Jalloh Abu Bakarr Kyuro Sasaki +1 位作者 Jalloh Yaguba Barrie Abubakarr Karim 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2016年第4期581-585,共5页
In this research, a method called ANNMG is presented to integrate Artificial Neural Networks and Geostatistics for optimum mineral reserve evaluation. The word ANNMG simply means Artificial Neural Network Model integr... In this research, a method called ANNMG is presented to integrate Artificial Neural Networks and Geostatistics for optimum mineral reserve evaluation. The word ANNMG simply means Artificial Neural Network Model integrated with Geostatiscs, In this procedure, the Artificial Neural Network was trained, tested and validated using assay values obtained from exploratory drillholes. Next, the validated model was used to generalize mineral grades at known and unknown sampled locations inside the drilling region respectively. Finally, the reproduced and generalized assay values were combined and fed to geostatistics in order to develop a geological 3D block model. The regression analysis revealed that the predicted sample grades were in close proximity to the actual sample grades, The generalized grades from the ANNMG show that this process could be used to complement exploration activities thereby reducing drilling requirement. It could also be an effective mineral reserve evaluation method that could oroduce optimum block model for mine design. 展开更多
关键词 Artificial Neural network Model withGeostatistics (ANNMG)3d geological block modeling Mine designKriging
下载PDF
上一页 1 2 16 下一页 到第
使用帮助 返回顶部