With the continuous advancement of technology,the application of 3D printing technology in the field of dental medicine is becoming increasingly widespread.This article aims to explore the current applications and fut...With the continuous advancement of technology,the application of 3D printing technology in the field of dental medicine is becoming increasingly widespread.This article aims to explore the current applications and future potential of 3D printing technology in dental medicine and to analyze its benefits and challenges.It first introduces the current state of 3D printing technology in dental implants,crowns,bridges,orthodontics,and maxillofacial surgery.It then discusses the potential applications of 3D printing technology in oral tissue engineering,drug delivery systems,personalized dental prosthetics,and surgical planning.Finally,it analyzes the benefits of 3D printing technology in dental medicine,such as improving treatment accuracy and patient comfort,and shortening treatment times,while also highlighting the challenges faced,such as costs,material choices,and technical limitations.This article aims to provide a reference for professionals in the field of dental medicine and to promote the further application and development of 3D printing technology in this area.展开更多
Objective:To investigate the effect of 3D laparoscopic natural orifice specimen extraction surgery as rectal cancer treatment.Methods:The study was carried out in Shaanxi Provincial People’s Hospital from July 2021 t...Objective:To investigate the effect of 3D laparoscopic natural orifice specimen extraction surgery as rectal cancer treatment.Methods:The study was carried out in Shaanxi Provincial People’s Hospital from July 2021 to July 2022.80 rectal cancer patients were selected and divided into two groups which are the experimental group and control group.The experimental group was given 3D laparoscopic surgery while the control group was given 2D laparoscopic surgery.The results were compared and analysed.Results:The patients in the experimental group had shorter operative and evacuation times,less intraoperative bleeding,and a lower rate of complications.Conclusion:The clinical application of 3D laparoscopic radical surgery for rectal cancer via natural lumen extraction is more effective,which can promote patients'recovery and reduce the incidence of adverse events.展开更多
Background:Three-dimensional printing technology may become a key factor in transforming clinical practice and in significant improvement of treatment outcomes.The introduction of this technique into pediatric cardiac...Background:Three-dimensional printing technology may become a key factor in transforming clinical practice and in significant improvement of treatment outcomes.The introduction of this technique into pediatric cardiac surgery will allow us to study features of the anatomy and spatial relations of a defect and to simulate the optimal surgical repair on a printed model in every individual case.Methods:We performed the prospective cohort study which included 29 children with congenital heart defects.The hearts and the great vessels were modeled and printed out.Measurements of the same cardiac areas were taken in the same planes and points at multislice computed tomography images(group 1)and on printed 3D models of the hearts(group 2).Pre-printing treatment of the multislice computed tomography data and 3D model preparation were performed according to a newly developed algorithm.Results:The measurements taken on the 3D-printed cardiac models and the tomographic images did not differ significantly,which allowed us to conclude that the models were highly accurate and informative.The new algorithm greatly simplifies and speeds up the preparation of a 3D model for printing,while maintaining high accuracy and level of detail.Conclusions:The 3D-printed models provide an accurate preoperative assessment of the anatomy of a defect in each case.The new algorithm has several important advantages over other available programs.They enable the development of customized preliminary plans for surgical repair of each specific complex congenital heart disease,predict possible issues,determine the optimal surgical tactics,and significantly improve surgical outcomes.展开更多
Minimally invasive surgery is an important technique used for cytopathological examination.Recently,multiple studies have been conducted on a three-dimensional(3D)puncture simulation model as it can reveal the interna...Minimally invasive surgery is an important technique used for cytopathological examination.Recently,multiple studies have been conducted on a three-dimensional(3D)puncture simulation model as it can reveal the internal deformation state of the tissue at the micro level.In this study,a viscoelastic constitutive equation suitable for muscle tissue was derived.Additionally,a method was developed to define the fracture characteristics of muscle tissue material during the simulation process.The fracture of the muscle tissue in contact with the puncture needle was simulated using the cohesive zone model and a 3D puncture finite element model was established to analyze the deformation of the muscle tissue.The stress nephogram and reaction force under different parameters were compared and analyzed to study the deformation of the biological soft tissue and guide the actual operation process and reduce pain.展开更多
Reoperative cardiac surgery is becoming more common surgery although it carries significant risk due to possible injury to vital structures under the sternum. Three-dimensional multidetector computed tomographic angio...Reoperative cardiac surgery is becoming more common surgery although it carries significant risk due to possible injury to vital structures under the sternum. Three-dimensional multidetector computed tomographic angiography (3-D MDCTA) allows identifying the relationship between the sternum and the mediastinal structures. Evidence shows that 3-D MDCTA guides surgical strategy and enables to perform this challenging surgery safely.展开更多
Background: Augmented reality(AR) technology is used to reconstruct three-dimensional(3D) images of hepatic and biliary structures from computed tomography and magnetic resonance imaging data, and to superimpose the v...Background: Augmented reality(AR) technology is used to reconstruct three-dimensional(3D) images of hepatic and biliary structures from computed tomography and magnetic resonance imaging data, and to superimpose the virtual images onto a view of the surgical field. In liver surgery, these superimposed virtual images help the surgeon to visualize intrahepatic structures and therefore, to operate precisely and to improve clinical outcomes.Data Sources: The keywords "augmented reality", "liver", "laparoscopic" and "hepatectomy" were used for searching publications in the Pub Med database. The primary source of literatures was from peer-reviewed journals up to December 2016. Additional articles were identified by manual search of references found in the key articles.Results: In general, AR technology mainly includes 3D reconstruction, display, registration as well as tracking techniques and has recently been adopted gradually for liver surgeries including laparoscopy and laparotomy with video-based AR assisted laparoscopic resection as the main technical application. By applying AR technology, blood vessels and tumor structures in the liver can be displayed during surgery,which permits precise navigation during complex surgical procedures. Liver transformation and registration errors during surgery were the main factors that limit the application of AR technology.Conclusions: With recent advances, AR technologies have the potential to improve hepatobiliary surgical procedures. However, additional clinical studies will be required to evaluate AR as a tool for reducing postoperative morbidity and mortality and for the improvement of long-term clinical outcomes. Future research is needed in the fusion of multiple imaging modalities, improving biomechanical liver modeling,and enhancing image data processing and tracking technologies to increase the accuracy of current AR methods.展开更多
Three-dimensional(3D) printing(3DP) is a rapid prototyping technology that has gained increasing recognition in many different fields. Inherent accuracy and low-cost property enable applicability of 3DP in many areas,...Three-dimensional(3D) printing(3DP) is a rapid prototyping technology that has gained increasing recognition in many different fields. Inherent accuracy and low-cost property enable applicability of 3DP in many areas, such as manufacturing, aerospace,medical, and industrial design. Recently, 3DP has gained considerable attention in the medical field. The image data can be quickly turned into physical objects by using 3DP technology. These objects are being used across a variety of surgical specialties. The shortage of cadaver specimens is a major problem in medical education. However, this concern has been solved with the emergence of 3DP model. Custom-made items can be produced by using 3DP technology. This innovation allows 3DP use in preoperative planning and surgical training. Learning is difficult among medical students because of the complex anatomical structures of the liver. Thus, 3D visualization is a useful tool in anatomy teaching and hepatic surgical training. However,conventional models do not capture haptic qualities. 3DP can produce highly accurate and complex physical models. Many types of human or animal differentiated cells can be printed successfully with the development of 3D bio-printing technology. This progress represents a valuable breakthrough that exhibits many potential uses, such as research on drug metabolism or liver disease mechanism. This technology can also be used to solve shortage of organs for transplant in the future.展开更多
Background:In recent years,the development of digital imaging technology has had a significant influence in liver surgery.The ability to obtain a 3-dimensional(3D)visualization of the liver anatomy has provided surger...Background:In recent years,the development of digital imaging technology has had a significant influence in liver surgery.The ability to obtain a 3-dimensional(3D)visualization of the liver anatomy has provided surgery with virtual reality of simulation 3D computer models,3D printing models and more recently holograms and augmented reality(when virtual reality knowledge is superimposed onto reality).In addition,the utilization of real-time fluorescent imaging techniques based on indocyanine green(ICG)uptake allows clinicians to precisely delineate the liver anatomy and/or tumors within the parenchyma,applying the knowledge obtained preoperatively through digital imaging.The combination of both has transformed the abstract thinking until now based on 2D imaging into a 3D preoperative conception(virtual reality),enhanced with real-time visualization of the fluorescent liver structures,effectively facilitating intraoperative navigated liver surgery(augmented reality).Data sources:A literature search was performed from inception until January 2021 in MEDLINE(Pub Med),Embase,Cochrane library and database for systematic reviews(CDSR),Google Scholar,and National Institute for Health and Clinical Excellence(NICE)databases.Results:Fifty-one pertinent articles were retrieved and included.The different types of digital imaging technologies and the real-time navigated liver surgery were estimated and compared.Conclusions:ICG fluorescent imaging techniques can contribute essentially to the real-time definition of liver segments;as a result,precise hepatic resection can be guided by the presence of fluorescence.Furthermore,3D models can help essentially to further advancing of precision in hepatic surgery by permitting estimation of liver volume and functional liver remnant,delineation of resection lines along the liver segments and evaluation of tumor margins.In liver transplantation and especially in living donor liver transplantation(LDLT),3D printed models of the donor’s liver and models of the recipient’s hilar anatomy can contribute further to improving the results.In particular,pediatric LDLT abdominal cavity models can help to manage the largest challenge of this procedure,namely large-for-size syndrome.展开更多
We report the first case of single port laparoscopic right hemicolectomy for advanced colon cancer.An abdominal 3 cm length incision was made via the umbilicus.A small wound retractor and a surgical glove were used as...We report the first case of single port laparoscopic right hemicolectomy for advanced colon cancer.An abdominal 3 cm length incision was made via the umbilicus.A small wound retractor and a surgical glove were used as a single port.All soft tissue anterior to the superior mesenteric vein was completely removed and D3 lymph node dissection was achieved.The total operative time was 180 min with minimal blood loss (<50 mL).The size of the tumor was 5 cm×3 cm and its tumor stage was T3N0.Sixty-nine lymph nodes were harvested and none were positive.We believe that single port surgery for colon cancer is a feasible and safe procedure with surgical results comparable to conventional laparoscopic procedures.展开更多
Computer assisted surgical planning allowed for a better selection of patients,evaluation of operative strategy, appropriate volumetric measurements,identification of anatomical risks, definition of tumour resection m...Computer assisted surgical planning allowed for a better selection of patients,evaluation of operative strategy, appropriate volumetric measurements,identification of anatomical risks, definition of tumour resection margins and choice of surgical approach in liver oncologic resections and living donor liver transplantations. Although preoperative computer surgical analysis has been widely used in daily clinical practice, intraoperative computer assisted solutions for risk analysis and navigation in liver surgery are not widely available or still under clinical evaluation. Computer science technology can efficiently assist modern surgeons during complex liver operations, mainly by providing image guidance with individualized 2 D images and 3 D models of the various anatomical and pathological structures of interest. Intraoperative computer assisted liver surgery is particularly useful in complex parenchyma-sparing hepatectomies, for intraoperative risk analysis and for the effective treatment of colorectal metastases after neoadjuvant therapy or when they are multiple. In laparoscopic liver surgery, intraoperative computer aid is definitively more important as, apart from a restricted field of view, there is also loss of the fine haptic feedback. Intraoperative computer assisted developments face challenges that prevent their application in daily clinical practice. There is a vast variety of studies regarding intraoperative computer assisted liver surgery but there are no clear objective measurements in order to compare them and select the most effective solutions. An overview of up-to-date intraoperative computer assisted solutions for liver surgery will be discussed.展开更多
Craniomaxillofacial reconstruction implants,which are extensively used in head and neck surgery,are conventionally made in standardized forms.During surgery,the implant must be bended manually to match the anatomy of ...Craniomaxillofacial reconstruction implants,which are extensively used in head and neck surgery,are conventionally made in standardized forms.During surgery,the implant must be bended manually to match the anatomy of the individual bones.The bending process is time-consuming,especially for inexperienced surgeons.Moreover,repetitive bending may induce undesirable internal stress concentration,resulting in fatigue under masticatory loading in v iv o and causing various complications such as implant fracture,screw loosening,and bone resorption.There have been reports on the use of patient-specific 3D-printed implants for craniomaxillofacial reconstruction,although few reports have considered implant quality.In this paper,we present a systematic approach for making 3D-printed patientspecific surgical implants for craniomaxillofacial reconstruction.The approach consists of three parts:First,an easy-to-use design module is developed using Solidworks®software,which helps surgeons to design the implants and the axillary fixtures for surgery.Design engineers can then carry out the detailed design and use finite-element modeling(FEM)to optimize the design.Second,the fabrication process is carried out in three steps:0 testing the quality of the powder;(2)setting up the appropriate process parameters and running the 3D printing process;and (3)conducting post-processing treatments(i.e.,heat and surface treatments)to ensure the quality and performance of the implant.Third,the operation begins after the final checking of the implant and sterilization.After the surgery,postoperative rehabilitation follow-up can be carried out using our patient tracking software.Following this systematic approach,we have successfully conducted a total of 41 surgical cases.3D-printed patient-specific implants have a number of advantages;in particular,their use reduces surgery time and shortens patient recovery time.Moreover,the presented approach helps to ensure implant quality.展开更多
Liver resection and transplantation are the most effective therapies for many hepatobiliary tumors and diseases.However,these surgical procedures are challenging due to the anatomic complexity and many anatomical vari...Liver resection and transplantation are the most effective therapies for many hepatobiliary tumors and diseases.However,these surgical procedures are challenging due to the anatomic complexity and many anatomical variations of the vascular and biliary structures.Three-dimensional(3D)printing models can clearly locate and describe blood vessels,bile ducts and tumors,calculate both liver and residual liver volumes,and finally predict the functional status of the liver after resection surgery.The 3D printing models may be particularly helpful in the preoperative evaluation and surgical planning of especially complex liver resection and transplantation,allowing to possibly increase resectability rates and reduce postoperative complications.With the continuous developments of imaging techniques,such models are expected to become widely applied in clinical practice.展开更多
BACKGROUND For treatment of hilar cholangiocarcinoma(HCCA),the rate of radical resection is low and prognosis is poor,and preoperative evaluation is not sufficiently accurate.3D visualization has the advantage of givi...BACKGROUND For treatment of hilar cholangiocarcinoma(HCCA),the rate of radical resection is low and prognosis is poor,and preoperative evaluation is not sufficiently accurate.3D visualization has the advantage of giving a stereoscopic view,which makes accurate resection of HCCA possible.AIM To establish precise resection of HCCA based on eOrganmap 3D reconstruction and full quantification technology.METHODS We retrospectively analyzed the clinical data of 73 patients who underwent HCCA surgery.All patients were assigned to two groups.The traditional group received traditional 2D imaging planning before surgery(n=35).The eOrganmap group underwent 3D reconstruction and full quantitative technical planning before surgery(n=38).The preoperative evaluation,anatomical classification of hilar hepatic vessels,indicators associated with surgery,postoperative complications,liver function,and stress response indexes were compared between the groups.RESULTS Compared with the traditional group,the amount of intraoperative blood loss in the eOrganmap group was lower,the operating time and postoperative intestinal ventilation time were shorter,and R0 resection rate and lymph node dissection number were higher(P<0.05).The total complication rate in the eOrganmap group was 21.05%compared with 25.71%in the traditional group(P>0.05).The levels of total bilirubin,Albumin(ALB),aspartate transaminase,and alanine transaminase in the eOrganmap group were significantly different from those in the traditional group(intergroup effect:F=450.400,79.120,95.730,and 13.240,respectively;all P<0.001).Total bilirubin,aspartate transaminase,and alanine transaminase in both groups showed a decreasing trend with time(time effect:F=30.270,17.340,and 13.380,respectively;all P<0.001).There was an interaction between patient group and time(interaction effect:F=3.072,2.965,and 2.703,respectively;P=0.0282,0.032,and 0.046,respectively);ALB levels in both groups tended to increase with time(time effect:F=22.490,P<0.001),and there was an interaction effect between groups and time(interaction effect:F=4.607,P=0.004).In the eOrganmap group,there was a high correlation between the actual volume of intraoperative liver specimen resection and the volume of preoperative virtual liver resection(t=0.916,P<0.001).CONCLUSION The establishment of accurate laparoscopic resection of hilar cholangiocarcinoma based on preoperative eOrganmap 3D reconstruction and full quantization technology can make laparoscopic resection of hilar cholangiocarcinoma more accurate and safe.展开更多
文摘With the continuous advancement of technology,the application of 3D printing technology in the field of dental medicine is becoming increasingly widespread.This article aims to explore the current applications and future potential of 3D printing technology in dental medicine and to analyze its benefits and challenges.It first introduces the current state of 3D printing technology in dental implants,crowns,bridges,orthodontics,and maxillofacial surgery.It then discusses the potential applications of 3D printing technology in oral tissue engineering,drug delivery systems,personalized dental prosthetics,and surgical planning.Finally,it analyzes the benefits of 3D printing technology in dental medicine,such as improving treatment accuracy and patient comfort,and shortening treatment times,while also highlighting the challenges faced,such as costs,material choices,and technical limitations.This article aims to provide a reference for professionals in the field of dental medicine and to promote the further application and development of 3D printing technology in this area.
文摘Objective:To investigate the effect of 3D laparoscopic natural orifice specimen extraction surgery as rectal cancer treatment.Methods:The study was carried out in Shaanxi Provincial People’s Hospital from July 2021 to July 2022.80 rectal cancer patients were selected and divided into two groups which are the experimental group and control group.The experimental group was given 3D laparoscopic surgery while the control group was given 2D laparoscopic surgery.The results were compared and analysed.Results:The patients in the experimental group had shorter operative and evacuation times,less intraoperative bleeding,and a lower rate of complications.Conclusion:The clinical application of 3D laparoscopic radical surgery for rectal cancer via natural lumen extraction is more effective,which can promote patients'recovery and reduce the incidence of adverse events.
基金funded by the Ministry of Science and Higher Education of the Russian Federation as part of the World-Class Research Center Program:Advanced Digital Technologies(Contract No.075-15-2022-311,dated 20.04.2022).
文摘Background:Three-dimensional printing technology may become a key factor in transforming clinical practice and in significant improvement of treatment outcomes.The introduction of this technique into pediatric cardiac surgery will allow us to study features of the anatomy and spatial relations of a defect and to simulate the optimal surgical repair on a printed model in every individual case.Methods:We performed the prospective cohort study which included 29 children with congenital heart defects.The hearts and the great vessels were modeled and printed out.Measurements of the same cardiac areas were taken in the same planes and points at multislice computed tomography images(group 1)and on printed 3D models of the hearts(group 2).Pre-printing treatment of the multislice computed tomography data and 3D model preparation were performed according to a newly developed algorithm.Results:The measurements taken on the 3D-printed cardiac models and the tomographic images did not differ significantly,which allowed us to conclude that the models were highly accurate and informative.The new algorithm greatly simplifies and speeds up the preparation of a 3D model for printing,while maintaining high accuracy and level of detail.Conclusions:The 3D-printed models provide an accurate preoperative assessment of the anatomy of a defect in each case.The new algorithm has several important advantages over other available programs.They enable the development of customized preliminary plans for surgical repair of each specific complex congenital heart disease,predict possible issues,determine the optimal surgical tactics,and significantly improve surgical outcomes.
基金Natural Science Foundation of Shandong Province(Grant No.ZR2019JQ19)Interdisciplinary Research Project of Shandong University(Grant No.2017JC027)China Scholarship Council(CSC).
文摘Minimally invasive surgery is an important technique used for cytopathological examination.Recently,multiple studies have been conducted on a three-dimensional(3D)puncture simulation model as it can reveal the internal deformation state of the tissue at the micro level.In this study,a viscoelastic constitutive equation suitable for muscle tissue was derived.Additionally,a method was developed to define the fracture characteristics of muscle tissue material during the simulation process.The fracture of the muscle tissue in contact with the puncture needle was simulated using the cohesive zone model and a 3D puncture finite element model was established to analyze the deformation of the muscle tissue.The stress nephogram and reaction force under different parameters were compared and analyzed to study the deformation of the biological soft tissue and guide the actual operation process and reduce pain.
文摘Reoperative cardiac surgery is becoming more common surgery although it carries significant risk due to possible injury to vital structures under the sternum. Three-dimensional multidetector computed tomographic angiography (3-D MDCTA) allows identifying the relationship between the sternum and the mediastinal structures. Evidence shows that 3-D MDCTA guides surgical strategy and enables to perform this challenging surgery safely.
基金supported by grants from the Mission Plan Program of Beijing Municipal Administration of Hospitals(SML20152201)Beijing Municipal Administration of Hospitals Clinical Medicine Development of Special Funding(ZYLX201712)+1 种基金the National Natural Science Foundation of China(81427803)Beijing Tsinghua Changgung Hospital Fund(12015C1039)
文摘Background: Augmented reality(AR) technology is used to reconstruct three-dimensional(3D) images of hepatic and biliary structures from computed tomography and magnetic resonance imaging data, and to superimpose the virtual images onto a view of the surgical field. In liver surgery, these superimposed virtual images help the surgeon to visualize intrahepatic structures and therefore, to operate precisely and to improve clinical outcomes.Data Sources: The keywords "augmented reality", "liver", "laparoscopic" and "hepatectomy" were used for searching publications in the Pub Med database. The primary source of literatures was from peer-reviewed journals up to December 2016. Additional articles were identified by manual search of references found in the key articles.Results: In general, AR technology mainly includes 3D reconstruction, display, registration as well as tracking techniques and has recently been adopted gradually for liver surgeries including laparoscopy and laparotomy with video-based AR assisted laparoscopic resection as the main technical application. By applying AR technology, blood vessels and tumor structures in the liver can be displayed during surgery,which permits precise navigation during complex surgical procedures. Liver transformation and registration errors during surgery were the main factors that limit the application of AR technology.Conclusions: With recent advances, AR technologies have the potential to improve hepatobiliary surgical procedures. However, additional clinical studies will be required to evaluate AR as a tool for reducing postoperative morbidity and mortality and for the improvement of long-term clinical outcomes. Future research is needed in the fusion of multiple imaging modalities, improving biomechanical liver modeling,and enhancing image data processing and tracking technologies to increase the accuracy of current AR methods.
基金supported by a grant from the National HighTech Research and Development Projects (Grant No. 2015AA020303)
文摘Three-dimensional(3D) printing(3DP) is a rapid prototyping technology that has gained increasing recognition in many different fields. Inherent accuracy and low-cost property enable applicability of 3DP in many areas, such as manufacturing, aerospace,medical, and industrial design. Recently, 3DP has gained considerable attention in the medical field. The image data can be quickly turned into physical objects by using 3DP technology. These objects are being used across a variety of surgical specialties. The shortage of cadaver specimens is a major problem in medical education. However, this concern has been solved with the emergence of 3DP model. Custom-made items can be produced by using 3DP technology. This innovation allows 3DP use in preoperative planning and surgical training. Learning is difficult among medical students because of the complex anatomical structures of the liver. Thus, 3D visualization is a useful tool in anatomy teaching and hepatic surgical training. However,conventional models do not capture haptic qualities. 3DP can produce highly accurate and complex physical models. Many types of human or animal differentiated cells can be printed successfully with the development of 3D bio-printing technology. This progress represents a valuable breakthrough that exhibits many potential uses, such as research on drug metabolism or liver disease mechanism. This technology can also be used to solve shortage of organs for transplant in the future.
文摘Background:In recent years,the development of digital imaging technology has had a significant influence in liver surgery.The ability to obtain a 3-dimensional(3D)visualization of the liver anatomy has provided surgery with virtual reality of simulation 3D computer models,3D printing models and more recently holograms and augmented reality(when virtual reality knowledge is superimposed onto reality).In addition,the utilization of real-time fluorescent imaging techniques based on indocyanine green(ICG)uptake allows clinicians to precisely delineate the liver anatomy and/or tumors within the parenchyma,applying the knowledge obtained preoperatively through digital imaging.The combination of both has transformed the abstract thinking until now based on 2D imaging into a 3D preoperative conception(virtual reality),enhanced with real-time visualization of the fluorescent liver structures,effectively facilitating intraoperative navigated liver surgery(augmented reality).Data sources:A literature search was performed from inception until January 2021 in MEDLINE(Pub Med),Embase,Cochrane library and database for systematic reviews(CDSR),Google Scholar,and National Institute for Health and Clinical Excellence(NICE)databases.Results:Fifty-one pertinent articles were retrieved and included.The different types of digital imaging technologies and the real-time navigated liver surgery were estimated and compared.Conclusions:ICG fluorescent imaging techniques can contribute essentially to the real-time definition of liver segments;as a result,precise hepatic resection can be guided by the presence of fluorescence.Furthermore,3D models can help essentially to further advancing of precision in hepatic surgery by permitting estimation of liver volume and functional liver remnant,delineation of resection lines along the liver segments and evaluation of tumor margins.In liver transplantation and especially in living donor liver transplantation(LDLT),3D printed models of the donor’s liver and models of the recipient’s hilar anatomy can contribute further to improving the results.In particular,pediatric LDLT abdominal cavity models can help to manage the largest challenge of this procedure,namely large-for-size syndrome.
文摘We report the first case of single port laparoscopic right hemicolectomy for advanced colon cancer.An abdominal 3 cm length incision was made via the umbilicus.A small wound retractor and a surgical glove were used as a single port.All soft tissue anterior to the superior mesenteric vein was completely removed and D3 lymph node dissection was achieved.The total operative time was 180 min with minimal blood loss (<50 mL).The size of the tumor was 5 cm×3 cm and its tumor stage was T3N0.Sixty-nine lymph nodes were harvested and none were positive.We believe that single port surgery for colon cancer is a feasible and safe procedure with surgical results comparable to conventional laparoscopic procedures.
文摘Computer assisted surgical planning allowed for a better selection of patients,evaluation of operative strategy, appropriate volumetric measurements,identification of anatomical risks, definition of tumour resection margins and choice of surgical approach in liver oncologic resections and living donor liver transplantations. Although preoperative computer surgical analysis has been widely used in daily clinical practice, intraoperative computer assisted solutions for risk analysis and navigation in liver surgery are not widely available or still under clinical evaluation. Computer science technology can efficiently assist modern surgeons during complex liver operations, mainly by providing image guidance with individualized 2 D images and 3 D models of the various anatomical and pathological structures of interest. Intraoperative computer assisted liver surgery is particularly useful in complex parenchyma-sparing hepatectomies, for intraoperative risk analysis and for the effective treatment of colorectal metastases after neoadjuvant therapy or when they are multiple. In laparoscopic liver surgery, intraoperative computer aid is definitively more important as, apart from a restricted field of view, there is also loss of the fine haptic feedback. Intraoperative computer assisted developments face challenges that prevent their application in daily clinical practice. There is a vast variety of studies regarding intraoperative computer assisted liver surgery but there are no clear objective measurements in order to compare them and select the most effective solutions. An overview of up-to-date intraoperative computer assisted solutions for liver surgery will be discussed.
基金The study was partially supported by the Innovative Scientific Team Research Fund(2018IT100212)Science and Technology Bureau,Fo Shan,Guangdong,China.It was also partially supported by the Health and Medical Research Fund(05161626)Food and Health Bureau,Hong Kong,China.
文摘Craniomaxillofacial reconstruction implants,which are extensively used in head and neck surgery,are conventionally made in standardized forms.During surgery,the implant must be bended manually to match the anatomy of the individual bones.The bending process is time-consuming,especially for inexperienced surgeons.Moreover,repetitive bending may induce undesirable internal stress concentration,resulting in fatigue under masticatory loading in v iv o and causing various complications such as implant fracture,screw loosening,and bone resorption.There have been reports on the use of patient-specific 3D-printed implants for craniomaxillofacial reconstruction,although few reports have considered implant quality.In this paper,we present a systematic approach for making 3D-printed patientspecific surgical implants for craniomaxillofacial reconstruction.The approach consists of three parts:First,an easy-to-use design module is developed using Solidworks®software,which helps surgeons to design the implants and the axillary fixtures for surgery.Design engineers can then carry out the detailed design and use finite-element modeling(FEM)to optimize the design.Second,the fabrication process is carried out in three steps:0 testing the quality of the powder;(2)setting up the appropriate process parameters and running the 3D printing process;and (3)conducting post-processing treatments(i.e.,heat and surface treatments)to ensure the quality and performance of the implant.Third,the operation begins after the final checking of the implant and sterilization.After the surgery,postoperative rehabilitation follow-up can be carried out using our patient tracking software.Following this systematic approach,we have successfully conducted a total of 41 surgical cases.3D-printed patient-specific implants have a number of advantages;in particular,their use reduces surgery time and shortens patient recovery time.Moreover,the presented approach helps to ensure implant quality.
基金supported by grants from the National S&T Ma-jor Project(2017ZX10203205)the Natural Science Foundation of Zhejiang Province(Y21H160259)。
文摘Liver resection and transplantation are the most effective therapies for many hepatobiliary tumors and diseases.However,these surgical procedures are challenging due to the anatomic complexity and many anatomical variations of the vascular and biliary structures.Three-dimensional(3D)printing models can clearly locate and describe blood vessels,bile ducts and tumors,calculate both liver and residual liver volumes,and finally predict the functional status of the liver after resection surgery.The 3D printing models may be particularly helpful in the preoperative evaluation and surgical planning of especially complex liver resection and transplantation,allowing to possibly increase resectability rates and reduce postoperative complications.With the continuous developments of imaging techniques,such models are expected to become widely applied in clinical practice.
基金Key R&D Program of Hebei Province,No.223777101D.
文摘BACKGROUND For treatment of hilar cholangiocarcinoma(HCCA),the rate of radical resection is low and prognosis is poor,and preoperative evaluation is not sufficiently accurate.3D visualization has the advantage of giving a stereoscopic view,which makes accurate resection of HCCA possible.AIM To establish precise resection of HCCA based on eOrganmap 3D reconstruction and full quantification technology.METHODS We retrospectively analyzed the clinical data of 73 patients who underwent HCCA surgery.All patients were assigned to two groups.The traditional group received traditional 2D imaging planning before surgery(n=35).The eOrganmap group underwent 3D reconstruction and full quantitative technical planning before surgery(n=38).The preoperative evaluation,anatomical classification of hilar hepatic vessels,indicators associated with surgery,postoperative complications,liver function,and stress response indexes were compared between the groups.RESULTS Compared with the traditional group,the amount of intraoperative blood loss in the eOrganmap group was lower,the operating time and postoperative intestinal ventilation time were shorter,and R0 resection rate and lymph node dissection number were higher(P<0.05).The total complication rate in the eOrganmap group was 21.05%compared with 25.71%in the traditional group(P>0.05).The levels of total bilirubin,Albumin(ALB),aspartate transaminase,and alanine transaminase in the eOrganmap group were significantly different from those in the traditional group(intergroup effect:F=450.400,79.120,95.730,and 13.240,respectively;all P<0.001).Total bilirubin,aspartate transaminase,and alanine transaminase in both groups showed a decreasing trend with time(time effect:F=30.270,17.340,and 13.380,respectively;all P<0.001).There was an interaction between patient group and time(interaction effect:F=3.072,2.965,and 2.703,respectively;P=0.0282,0.032,and 0.046,respectively);ALB levels in both groups tended to increase with time(time effect:F=22.490,P<0.001),and there was an interaction effect between groups and time(interaction effect:F=4.607,P=0.004).In the eOrganmap group,there was a high correlation between the actual volume of intraoperative liver specimen resection and the volume of preoperative virtual liver resection(t=0.916,P<0.001).CONCLUSION The establishment of accurate laparoscopic resection of hilar cholangiocarcinoma based on preoperative eOrganmap 3D reconstruction and full quantization technology can make laparoscopic resection of hilar cholangiocarcinoma more accurate and safe.