Collagen possesses high biocompatibility with all tissue and cell types in the body,enabling the creation of multifunc-tional composite materials for medical applications.In biomedical engineering,naturally-sourced co...Collagen possesses high biocompatibility with all tissue and cell types in the body,enabling the creation of multifunc-tional composite materials for medical applications.In biomedical engineering,naturally-sourced collagen is often combined with diverse organic and inorganic bioactive components to eliminate defects and disorders in fields including orthopedics,dermatology,and more.At the same time,medical-related infection issues and the precise treatment needs of patients require collagen composite biomaterials to have antibacterial properties and customized structures.This paper reviews the antibacterial functionalization of collagen composite biomaterials in recent years,including the combination with inorganic or organic antibacterial agents,which is beneficial for preventing and con-trolling biological contamination in medical applications.Then,the existing problems and future development direc-tions for the architecturalization of collagen composite materials with 3D printing were discussed,providing guidance for personalized customization of multifunctional materials to meet the specific needs of patients in the future.展开更多
Over millions of years of evolution,nature has created organisms with overwhelming performances due to their unique materials and structures,providing us with valuable inspirations for the development of next-generati...Over millions of years of evolution,nature has created organisms with overwhelming performances due to their unique materials and structures,providing us with valuable inspirations for the development of next-generation biomedical devices.As a promising new technology,3D printing enables the fabrication of multiscale,multi-material,and multi-functional threedimensional(3D)biomimetic materials and structures with high precision and great flexibility.The manufacturing challenges of biomedical devices with advanced biomimetic materials and structures for various applications were overcome with the flourishing development of 3D printing technologies.In this paper,the state-of-the-art additive manufacturing of biomimetic materials and structures in the field of biomedical engineering were overviewed.Various kinds of biomedical applications,including implants,lab-on-chip,medicine,microvascular network,and artificial organs and tissues,were respectively discussed.The technical challenges and limitations of biomimetic additive manufacturing in biomedical applications were further investigated,and the potential solutions and intriguing future technological developments of biomimetic 3D printing of biomedical devices were highlighted.展开更多
The existence of joints or other kinds of discontinuities has a dramatic efect on the stability of rock excavations and engineering.As a result,a great challenge in rock mass mechanics testing is to prepare rock or ro...The existence of joints or other kinds of discontinuities has a dramatic efect on the stability of rock excavations and engineering.As a result,a great challenge in rock mass mechanics testing is to prepare rock or rock-like samples with defects.In recent years,3D printing technology has become a promising tool in the feld of rock mass mechanics and engineering.This study frst reviews and discusses the research status of traditional test methods in rock mass mechanics tests of making rock samples with defects.Then,based on the comprehensive analysis of previous research,the application of 3D printing technology in rock mass mechanics is expounded from the following three aspects.The frst is the printing material.Although there are many materials for 3D printing,it has been found that 3D printing materials that can be used for rock mass mechanics research are very limited.After research,we summarize and evaluate printing material that can be used for rock mass mechanics studies.The second is the printing methodology,which mainly introduces the current application forms of 3D printing technology in rock mass mechanics.This includes printed precise casting molds and one-time printed samples.The last one is the printing model,which includes small-scale samples for mechanical tests and large-scale physical models.Then,the benefts and drawbacks of using 3D printing samples in mechanical tests and the validity of their simulation of real rock are discussed.Compared with traditional rock samples collected in nature or synthetic rock-like samples,the samples made by 3D printing technology have unique advantages,such as higher test repeatability,visualization of rock internal structure and stress distribution.There is thus great potential for the use of 3D printing in the feld of rock mass mechanics.However,3D printing materials also have shortcomings,such as insufcient material strength and accuracy at this stage.Finally,the application prospect of 3D printing technology in rock mass mechanics research is proposed.展开更多
In recent years, additive manufacturing (AM), known as “3D printing”, has experienced exceptional growth thanks to the development of mechatronics and materials science. Fused filament deposition (FDM) manufacturing...In recent years, additive manufacturing (AM), known as “3D printing”, has experienced exceptional growth thanks to the development of mechatronics and materials science. Fused filament deposition (FDM) manufacturing is the most widely used technique in the field of AM, due to low operating and material costs. However, the materials commonly used for this technology are virgin thermoplastics. It is worth noting a considerable amount of waste exists due to failed print and disposable prototypes. In this regard, using green and sustainable materials is essential to limit the impact on the environment. The recycled, bio-based, and blended recycled materials are therefore a potential approach for 3D printing. In contrast, the lack of understanding of the mechanism of interlayer adhesion and the degradation of materials for FDM printing has posed a major challenge for these green materials. This paper provides an overview of the FDM technique and material requirements for 3D printing filaments. The main objective is to highlight the advantages and disadvantages of using recycled, bio-based, and blended materials based on thermoplastics for 3D printing filaments. In this work, solutions to improve the mechanical properties of 3D printing parts before, during, and after the printing process are pointed out. This paper provides an overview on choosing which materials and solutions depend on the specific application purposes. Moreover, research gaps and opportunities are mentioned in the discussion and conclusions sections of this study.展开更多
Four-dimensional printing allows for the transformation capabilities of 3D-printed architectures over time,altering their shape,properties,or function when exposed to external stimuli.This interdisciplinary technology...Four-dimensional printing allows for the transformation capabilities of 3D-printed architectures over time,altering their shape,properties,or function when exposed to external stimuli.This interdisciplinary technology endows the 3D architectures with unique functionalities,which has generated excitement in diverse research fields,such as soft robotics,biomimetics,biomedical devices,and sensors.Understanding the selection of the material,architectural designs,and employed stimuli is crucial to unlocking the potential of smart customization with 4D printing.This review summarizes recent significant developments in 4D printing and establishes links between smart materials,3D printing techniques,programmable structures,diversiform stimulus,and new functionalities for multidisciplinary applications.We start by introducing the advanced features of 4D printing and the key technological roadmap for its implementation.We then place considerable emphasis on printable smart materials and structural designs,as well as general approaches to designing programmable structures.We also review stimulus designs in smart materials and their associated stimulus-responsive mechanisms.Finally,we discuss new functionalities of 4D printing for potential applications and further development directions.展开更多
Tissue engineering is an emerging means for resolving the problems of tissue repair and organ replacement in regenerative medicine.Insufficient supply of nutrients and oxygen to cells in large-scale tissues has led to...Tissue engineering is an emerging means for resolving the problems of tissue repair and organ replacement in regenerative medicine.Insufficient supply of nutrients and oxygen to cells in large-scale tissues has led to the demand to prepare blood vessels.Scaffold-based tissue engineering approaches are effective methods to form new blood vessel tissues.The demand for blood vessels prompts systematic research on fabrication strategies of vascular scaffolds for tissue engineering.Recent advances in 3D printing have facilitated fabrication of vascular scaffolds,contributing to broad prospects for tissue vascularization.This review presents state of the art on modeling methods,print materials and preparation processes for fabrication of vascular scaffolds,and discusses the advantages and application fields of each method.Specially,significance and importance of scaffold-based tissue engineering for vascular regeneration are emphasized.Print materials and preparation processes are discussed in detail.And a focus is placed on preparation processes based on 3D printing technologies and traditional manufacturing technologies including casting,electrospinning,and Lego-like construction.And related studies are exemplified.Transformation of vascular scaffolds to clinical application is discussed.Also,four trends of 3D printing of tissue engineering vascular scaffolds are presented,including machine learning,near-infrared photopolymerization,4D printing,and combination of self-assembly and 3D printing-based methods.展开更多
The integration of additive manufacturing(AM)in design and engineering has prompted a wide spectrum of research efforts,involving topologically optimized solid/lattice structures,multimaterial structures,bioinspired o...The integration of additive manufacturing(AM)in design and engineering has prompted a wide spectrum of research efforts,involving topologically optimized solid/lattice structures,multimaterial structures,bioinspired organic structures,and multiscale structures,to name a few.However,except for obvious cases,very little attention has been given to the design and printing of more complex three-dimensional(3D)hollow structures or folded/creased structures.One of the main reasons is that such complex open or closed 3D cavities and regular/freeform folds generally lead to printing difficulties from support-structure-related issues.To address this barrier,this paper aims to investigate four-dimensional(4D)printing as well as origami-based design as an original research direction to design and build 3D support-free hollow structures.This work consists of describing the rough 3D hollow structures in terms of two-dimensional(2D)printed origami precursor layouts without any support structure.Such origami-based definitions are then embodied with folding functions that can be actuated and fulfilled by 3D printed smart materials.The desired 3D shape is then built once an external stimulus is applied to the active materials,therefore ensuring the transformation of the 2D origami layout to 3D structures.To demonstrate the relevance of the proposal,some illustrative cases are introduced.展开更多
Donor shortages for organ transplantations are a major clinical challenge worldwide. Potential risks that are inevitably encountered with traditional methods include complications, secondary injuries, and limited sour...Donor shortages for organ transplantations are a major clinical challenge worldwide. Potential risks that are inevitably encountered with traditional methods include complications, secondary injuries, and limited source donors. Three-dimensional (3D) printing technology holds the potential to solve these limitations; it can he used to rapidly manufacture personalized tissue engineering scaffolds, repair tissue defects in situ with cells, and even directly print tissue and organs. Such printed implants and organs not only perfectly match the patient's damaged tissue, hut can also have engineered material microstructures and cell arrangements to promote cell growth and differentiation. Thus, such implants allow the desired tissue repair to he achieved, and could eventually solve the donor-shortage problem. This review summarizes relevant studies and recent progress on four levels, introduces different types of biomedical materials, and discusses existing problems and development issues with 3D printing that are related to materials and to the construction of extracellular matrix in vitro for medical applications.展开更多
Since 3D printed hard materials could match the shape of bone,cell survival and fate determination towards osteoblasts in such materials have become a popular research target.In this study,a scaffold of hardmaterial f...Since 3D printed hard materials could match the shape of bone,cell survival and fate determination towards osteoblasts in such materials have become a popular research target.In this study,a scaffold of hardmaterial for 3D fabrication was designed to regulate developmental signal(Notch)transduction guiding osteoblast differentiation.We established a polycaprolactone(PCL)and cell-integrated 3D printing system(PCI3D)to reciprocally print the beams of PCL and cell-laden hydrogel for a module.This PCI3D module holds good cell viability of over 87%,whereas cells show about sixfold proliferation in a 7-day culture.The osteocytic MLO-Y4 was engineered to overexpress Notch ligand Dll4,making up 25%after mixing with 75%stromal cells in the PCI3D module.Osteocytic Dll4,unlike other delta-like family members such as Dll1 or Dll3,promotes osteoblast differentiation and themineralization of primary mouse and a cell line of bone marrow stromal cells when cultured in a PCI3D module for up to 28 days.Mechanistically,osteocytic Dll4 could not promote osteogenic differentiation of the primary bone marrow stromal cells(BMSCs)after conditional deletion of the Notch transcription factor RBPjκby Cre recombinase.These data indicate that osteocytic Dll4 activates RBPjκ-dependent canonical Notch signaling in BMSCs for their oriented differentiation towards osteoblasts.Additionally,osteocytic Dll4 holds a great potential for angiogenesis in human umbilical vein endothelial cells within modules.Our study reveals that osteocytic Dll4 could be the osteogenic niche determining cell fate towards osteoblasts.This will open a new avenue to overcome the current limitation of poor cell viability and low bioactivity of traditional orthopedic implants.展开更多
The first exothermic peak of cement-based material occurs a few minutes after mixing,and the properties of three dimensional(3D)printed concrete,such as setting time,are very sensitive to this.Against this background,...The first exothermic peak of cement-based material occurs a few minutes after mixing,and the properties of three dimensional(3D)printed concrete,such as setting time,are very sensitive to this.Against this background,based on the classical Park cement exothermic model of hydration,we propose and construct a numerical model of the first exothermic peak,taking into account the proportions of C_(3)S,C_(3)A and quicklime in particular.The calculated parameters are calibrated by means of relevant published exothermic test data.It is found that this developed model offers a good simulation of the first exothermic peak of hydration for C_(3)S and C_(3)A proportions from 0 to 100% of cement clinker and reflects the effect of quicklime content at 8%-10%.The unique value of this research is provision of an important computational tool for applications that are sensitive to the first exothermic peak of hydration,such as 3D printing.展开更多
Piezoelectricity in native bones has been well recognized as the key factor in bone regeneration.Thus,bio-piezoelectric materials have gained substantial attention in repairing damaged bone by mimicking the tissue’s ...Piezoelectricity in native bones has been well recognized as the key factor in bone regeneration.Thus,bio-piezoelectric materials have gained substantial attention in repairing damaged bone by mimicking the tissue’s electrical microenvironment(EM).However,traditional manufacturing strategies still encounter limitations in creating personalized bio-piezoelectric scaffolds,hindering their clinical applications.Three-dimensional(3D)/four-dimensional(4D)printing technology based on the principle of layer-by-layer forming and stacking of discrete materials has demonstrated outstanding advantages in fabricating bio-piezoelectric scaffolds in a more complex-shaped structure.Notably,4D printing functionality-shifting bio-piezoelectric scaffolds can provide a time-dependent programmable tissue EM in response to external stimuli for bone regeneration.In this review,we first summarize the physicochemical properties of commonly used bio-piezoelectric materials(including polymers,ceramics,and their composites)and representative biological findings for bone regeneration.Then,we discuss the latest research advances in the 3D printing of bio-piezoelectric scaffolds in terms of feedstock selection,printing process,induction strategies,and potential applications.Besides,some related challenges such as feedstock scalability,printing resolution,stress-to-polarization conversion efficiency,and non-invasive induction ability after implantation have been put forward.Finally,we highlight the potential of shape/property/functionality-shifting smart 4D bio-piezoelectric scaffolds in bone tissue engineering(BTE).Taken together,this review emphasizes the appealing utility of 3D/4D printed biological piezoelectric scaffolds as next-generation BTE implants.展开更多
The continual demand for modern optoelectronics with a high integration degree and customized functions has increased requirements for nanofabrication methods with high resolution,freeform,and mask-free.Meniscus-on-de...The continual demand for modern optoelectronics with a high integration degree and customized functions has increased requirements for nanofabrication methods with high resolution,freeform,and mask-free.Meniscus-on-demand three-dimensional(3D)printing is a high-resolution additive manufacturing technique that exploits the ink meniscus formed on a printer nozzle and is suitable for the fabrication of micro/nanoscale 3D architectures.This method can be used for solution-processed 3D patterning of materials at a resolution of up to100 nm,which provides an excellent platform for fundamental scientific studies and various practical applications.This review presents recent advances in meniscus-on-demand 3D printing,together with historical perspectives and theoretical background on meniscus formation and stability.Moreover,this review highlights the capabilities of meniscus-on-demand 3D printing in terms of printable materials and potential areas of application,such as electronics and photonics.展开更多
3D printing is a versatile technology capable of rapidly fabricating intricate geometric structures and enhancing the performance of flexible devices in comparison to conventional fabrication methods.However,3D-printe...3D printing is a versatile technology capable of rapidly fabricating intricate geometric structures and enhancing the performance of flexible devices in comparison to conventional fabrication methods.However,3D-printed devices are susceptible to failure as a result of minuscule structural impairments,thereby impacting their overall durability.The utilization of self-healing,biodegradable materials in 3D printing holds immense potential for increasing the longevity and safety of devices,thereby expanding the application prospects for such devices.Nevertheless,enhancing the self-repairing capability of devices and refining the 3D printing performance of self-healing materials are still considerable challenges that need to be addressed to achieve optimal outcomes.This paper reviews recent developments in the field of advancements in 3D printing using self-healing and biodegradable materials.First,it investigates self-healing and biodegradable materials that are compatible with 3D printing techniques,discussing their printability,material properties,and factors that influence print quality.Then,it explores practical applications of selfhealing and biodegradable 3D printing technology in depth.Finally,it critically offers practical perspectives on this topic.展开更多
Aggregation-induced emission(AIE)materials exhibit remarkable emission properties in the aggregated or solid states,offering numerous advantages such as high quantum yield,excellent photostability,and low background s...Aggregation-induced emission(AIE)materials exhibit remarkable emission properties in the aggregated or solid states,offering numerous advantages such as high quantum yield,excellent photostability,and low background signals.These characteristics have led to their widespread application in optoelectronic devices,bio-detection markers,chemical sensing,and stimuli-responsive applications among others.In contrast to traditional manufacturing processes,3D printing(3DP)enables rapid prototyping and large-scale customization with excellent flexibility in manufacturing techniques and material selection.The combination of AIE materials with 3DP can provide new strategies for fabricating materials and devices with complex structures.Therefore,3DP is an ideal choice for processing AIE organic luminescent materials.However,3DP of AIE materials is still in the early stages of development and is facing many challenges including limited printable AIE materials,poor printing functionalities and limited application range.This review aims to summarize the significant achievements in the field of 3DP of AIE materials.Firstly,different types of AIE materials for 3DP are studied,and the factors that affect the printing effect and the luminescence mechanism are discussed.Then,the latest advancements made in various application domains using 3D printed AIE materials are summarized.Finally,the existing challenges of this emerging field are discussed while the future prospects are prospected.展开更多
Additive manufacturing(AM),interchangeably termed as3D printing(3DP),has been defined as one of the key technologies in the national development strategies of a number of countries around the world.America Makes,as th...Additive manufacturing(AM),interchangeably termed as3D printing(3DP),has been defined as one of the key technologies in the national development strategies of a number of countries around the world.America Makes,as the National Additive Manufacturing Innovation Institute,is the nation’s leading and collaborative partner in AM/3DP technology research,discovery,creation,and innovation,working efficiently to innovate and accelerate AM/3DP to increase America’s global manufacturing competitiveness(https://americamakes.us).German展开更多
The current study is directed to the rapidly developing field of inorganic material 3D object production at nano-/micro scale.The fabrication method includes laser lithography of hybrid organic-inorganic materials wit...The current study is directed to the rapidly developing field of inorganic material 3D object production at nano-/micro scale.The fabrication method includes laser lithography of hybrid organic-inorganic materials with subsequent heat treatment leading to a variety of crystalline phases in 3D structures.In this work,it was examined a series of organometallic polymer precursors with different silicon(Si)and zirconium(Zr)molar ratios,ranging from 9:1 to 5:5,prepared via sol-gel method.All mixtures were examined for perspective to be used in 3D laser manufacturing by fabricating nano-and micro-feature sized structures.Their spatial downscaling and surface morphology were evaluated depending on chemical composition and crystallographic phase.The appearance of a crystalline phase was proven using single-crystal X-ray diffraction analysis,which revealed a lower crystallization temperature for microstructures compared to bulk materials.Fabricated 3D objects retained a complex geometry without any distortion after heat treatment up to 1400℃.Under the proper conditions,a wide variety of crystalline phases as well as zircon(ZrSiO_(4)-a highly stable material)can be observed.In addition,the highest new record of achieved resolution below 60 nm has been reached.The proposed preparation protocol can be used to manufacture micro/nano-devices with high precision and resistance to high temperature and aggressive environment.展开更多
基金supported by the Ministry of Science and Higher Education of the Russian Federation(Contract No.075-03-2023-642)Science and Technology Planning Project of Guangzhou City(No.2023B03J1332)Fundamental Research Funds for the Central Universities(No.2022ZYGXZR105).
文摘Collagen possesses high biocompatibility with all tissue and cell types in the body,enabling the creation of multifunc-tional composite materials for medical applications.In biomedical engineering,naturally-sourced collagen is often combined with diverse organic and inorganic bioactive components to eliminate defects and disorders in fields including orthopedics,dermatology,and more.At the same time,medical-related infection issues and the precise treatment needs of patients require collagen composite biomaterials to have antibacterial properties and customized structures.This paper reviews the antibacterial functionalization of collagen composite biomaterials in recent years,including the combination with inorganic or organic antibacterial agents,which is beneficial for preventing and con-trolling biological contamination in medical applications.Then,the existing problems and future development direc-tions for the architecturalization of collagen composite materials with 3D printing were discussed,providing guidance for personalized customization of multifunctional materials to meet the specific needs of patients in the future.
基金The authors acknowledge Arizona State University for the start-up funding support.
文摘Over millions of years of evolution,nature has created organisms with overwhelming performances due to their unique materials and structures,providing us with valuable inspirations for the development of next-generation biomedical devices.As a promising new technology,3D printing enables the fabrication of multiscale,multi-material,and multi-functional threedimensional(3D)biomimetic materials and structures with high precision and great flexibility.The manufacturing challenges of biomedical devices with advanced biomimetic materials and structures for various applications were overcome with the flourishing development of 3D printing technologies.In this paper,the state-of-the-art additive manufacturing of biomimetic materials and structures in the field of biomedical engineering were overviewed.Various kinds of biomedical applications,including implants,lab-on-chip,medicine,microvascular network,and artificial organs and tissues,were respectively discussed.The technical challenges and limitations of biomimetic additive manufacturing in biomedical applications were further investigated,and the potential solutions and intriguing future technological developments of biomimetic 3D printing of biomedical devices were highlighted.
基金the National Natural Science Foundation of China(52074166)Shandong Province(ZR2021YQ38)the Open Grant of State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mines(SKLMRDPC20KF02).
文摘The existence of joints or other kinds of discontinuities has a dramatic efect on the stability of rock excavations and engineering.As a result,a great challenge in rock mass mechanics testing is to prepare rock or rock-like samples with defects.In recent years,3D printing technology has become a promising tool in the feld of rock mass mechanics and engineering.This study frst reviews and discusses the research status of traditional test methods in rock mass mechanics tests of making rock samples with defects.Then,based on the comprehensive analysis of previous research,the application of 3D printing technology in rock mass mechanics is expounded from the following three aspects.The frst is the printing material.Although there are many materials for 3D printing,it has been found that 3D printing materials that can be used for rock mass mechanics research are very limited.After research,we summarize and evaluate printing material that can be used for rock mass mechanics studies.The second is the printing methodology,which mainly introduces the current application forms of 3D printing technology in rock mass mechanics.This includes printed precise casting molds and one-time printed samples.The last one is the printing model,which includes small-scale samples for mechanical tests and large-scale physical models.Then,the benefts and drawbacks of using 3D printing samples in mechanical tests and the validity of their simulation of real rock are discussed.Compared with traditional rock samples collected in nature or synthetic rock-like samples,the samples made by 3D printing technology have unique advantages,such as higher test repeatability,visualization of rock internal structure and stress distribution.There is thus great potential for the use of 3D printing in the feld of rock mass mechanics.However,3D printing materials also have shortcomings,such as insufcient material strength and accuracy at this stage.Finally,the application prospect of 3D printing technology in rock mass mechanics research is proposed.
文摘In recent years, additive manufacturing (AM), known as “3D printing”, has experienced exceptional growth thanks to the development of mechatronics and materials science. Fused filament deposition (FDM) manufacturing is the most widely used technique in the field of AM, due to low operating and material costs. However, the materials commonly used for this technology are virgin thermoplastics. It is worth noting a considerable amount of waste exists due to failed print and disposable prototypes. In this regard, using green and sustainable materials is essential to limit the impact on the environment. The recycled, bio-based, and blended recycled materials are therefore a potential approach for 3D printing. In contrast, the lack of understanding of the mechanism of interlayer adhesion and the degradation of materials for FDM printing has posed a major challenge for these green materials. This paper provides an overview of the FDM technique and material requirements for 3D printing filaments. The main objective is to highlight the advantages and disadvantages of using recycled, bio-based, and blended materials based on thermoplastics for 3D printing filaments. In this work, solutions to improve the mechanical properties of 3D printing parts before, during, and after the printing process are pointed out. This paper provides an overview on choosing which materials and solutions depend on the specific application purposes. Moreover, research gaps and opportunities are mentioned in the discussion and conclusions sections of this study.
基金the financial support from the National Natural Science Foundation of China(22109021)Natural Science Foundation of Jiangsu Province(BK20200375)Jiangsu Shuangchuang Talent Program(JSSCBS20210100)。
文摘Four-dimensional printing allows for the transformation capabilities of 3D-printed architectures over time,altering their shape,properties,or function when exposed to external stimuli.This interdisciplinary technology endows the 3D architectures with unique functionalities,which has generated excitement in diverse research fields,such as soft robotics,biomimetics,biomedical devices,and sensors.Understanding the selection of the material,architectural designs,and employed stimuli is crucial to unlocking the potential of smart customization with 4D printing.This review summarizes recent significant developments in 4D printing and establishes links between smart materials,3D printing techniques,programmable structures,diversiform stimulus,and new functionalities for multidisciplinary applications.We start by introducing the advanced features of 4D printing and the key technological roadmap for its implementation.We then place considerable emphasis on printable smart materials and structural designs,as well as general approaches to designing programmable structures.We also review stimulus designs in smart materials and their associated stimulus-responsive mechanisms.Finally,we discuss new functionalities of 4D printing for potential applications and further development directions.
文摘Tissue engineering is an emerging means for resolving the problems of tissue repair and organ replacement in regenerative medicine.Insufficient supply of nutrients and oxygen to cells in large-scale tissues has led to the demand to prepare blood vessels.Scaffold-based tissue engineering approaches are effective methods to form new blood vessel tissues.The demand for blood vessels prompts systematic research on fabrication strategies of vascular scaffolds for tissue engineering.Recent advances in 3D printing have facilitated fabrication of vascular scaffolds,contributing to broad prospects for tissue vascularization.This review presents state of the art on modeling methods,print materials and preparation processes for fabrication of vascular scaffolds,and discusses the advantages and application fields of each method.Specially,significance and importance of scaffold-based tissue engineering for vascular regeneration are emphasized.Print materials and preparation processes are discussed in detail.And a focus is placed on preparation processes based on 3D printing technologies and traditional manufacturing technologies including casting,electrospinning,and Lego-like construction.And related studies are exemplified.Transformation of vascular scaffolds to clinical application is discussed.Also,four trends of 3D printing of tissue engineering vascular scaffolds are presented,including machine learning,near-infrared photopolymerization,4D printing,and combination of self-assembly and 3D printing-based methods.
基金the Ministère de l’Enseignement Supérieur et de la Recherche, the French ‘Investissements d’Avenir’ program, project ISITE-BFC (contract ANR-15-IDEX-0003)China Scholarship Council as the main financial supports of this research program
文摘The integration of additive manufacturing(AM)in design and engineering has prompted a wide spectrum of research efforts,involving topologically optimized solid/lattice structures,multimaterial structures,bioinspired organic structures,and multiscale structures,to name a few.However,except for obvious cases,very little attention has been given to the design and printing of more complex three-dimensional(3D)hollow structures or folded/creased structures.One of the main reasons is that such complex open or closed 3D cavities and regular/freeform folds generally lead to printing difficulties from support-structure-related issues.To address this barrier,this paper aims to investigate four-dimensional(4D)printing as well as origami-based design as an original research direction to design and build 3D support-free hollow structures.This work consists of describing the rough 3D hollow structures in terms of two-dimensional(2D)printed origami precursor layouts without any support structure.Such origami-based definitions are then embodied with folding functions that can be actuated and fulfilled by 3D printed smart materials.The desired 3D shape is then built once an external stimulus is applied to the active materials,therefore ensuring the transformation of the 2D origami layout to 3D structures.To demonstrate the relevance of the proposal,some illustrative cases are introduced.
文摘Donor shortages for organ transplantations are a major clinical challenge worldwide. Potential risks that are inevitably encountered with traditional methods include complications, secondary injuries, and limited source donors. Three-dimensional (3D) printing technology holds the potential to solve these limitations; it can he used to rapidly manufacture personalized tissue engineering scaffolds, repair tissue defects in situ with cells, and even directly print tissue and organs. Such printed implants and organs not only perfectly match the patient's damaged tissue, hut can also have engineered material microstructures and cell arrangements to promote cell growth and differentiation. Thus, such implants allow the desired tissue repair to he achieved, and could eventually solve the donor-shortage problem. This review summarizes relevant studies and recent progress on four levels, introduces different types of biomedical materials, and discusses existing problems and development issues with 3D printing that are related to materials and to the construction of extracellular matrix in vitro for medical applications.
基金the National Natural Science Foundation of China(Nos.U1601220,82072450,and 81672118)Chongqing Science and Technology Commission-Basic Science and Frontier Technology Key Project(No.cstc2015jcyjBX0119)Chongqing Medical University Intelligent Medicine Research Project(No.ZHYX202115).
文摘Since 3D printed hard materials could match the shape of bone,cell survival and fate determination towards osteoblasts in such materials have become a popular research target.In this study,a scaffold of hardmaterial for 3D fabrication was designed to regulate developmental signal(Notch)transduction guiding osteoblast differentiation.We established a polycaprolactone(PCL)and cell-integrated 3D printing system(PCI3D)to reciprocally print the beams of PCL and cell-laden hydrogel for a module.This PCI3D module holds good cell viability of over 87%,whereas cells show about sixfold proliferation in a 7-day culture.The osteocytic MLO-Y4 was engineered to overexpress Notch ligand Dll4,making up 25%after mixing with 75%stromal cells in the PCI3D module.Osteocytic Dll4,unlike other delta-like family members such as Dll1 or Dll3,promotes osteoblast differentiation and themineralization of primary mouse and a cell line of bone marrow stromal cells when cultured in a PCI3D module for up to 28 days.Mechanistically,osteocytic Dll4 could not promote osteogenic differentiation of the primary bone marrow stromal cells(BMSCs)after conditional deletion of the Notch transcription factor RBPjκby Cre recombinase.These data indicate that osteocytic Dll4 activates RBPjκ-dependent canonical Notch signaling in BMSCs for their oriented differentiation towards osteoblasts.Additionally,osteocytic Dll4 holds a great potential for angiogenesis in human umbilical vein endothelial cells within modules.Our study reveals that osteocytic Dll4 could be the osteogenic niche determining cell fate towards osteoblasts.This will open a new avenue to overcome the current limitation of poor cell viability and low bioactivity of traditional orthopedic implants.
基金financially supported by the National Natural Science Foundation of China(Grant No.52178240)the Shanghai Scientific Research Program(No.21DZ1200401).
文摘The first exothermic peak of cement-based material occurs a few minutes after mixing,and the properties of three dimensional(3D)printed concrete,such as setting time,are very sensitive to this.Against this background,based on the classical Park cement exothermic model of hydration,we propose and construct a numerical model of the first exothermic peak,taking into account the proportions of C_(3)S,C_(3)A and quicklime in particular.The calculated parameters are calibrated by means of relevant published exothermic test data.It is found that this developed model offers a good simulation of the first exothermic peak of hydration for C_(3)S and C_(3)A proportions from 0 to 100% of cement clinker and reflects the effect of quicklime content at 8%-10%.The unique value of this research is provision of an important computational tool for applications that are sensitive to the first exothermic peak of hydration,such as 3D printing.
基金supported by grants from the National Natural Science Foundation of China(52205363)Fundamental Research Funds for the Central Universities(2019kfyRCPY044 and 2021GCRC002)+3 种基金Program for HUST Academic Frontier Youth Team(2018QYTD04)Program for Innovative Research Team of the Ministry of Education(IRT1244)Shenzhen-Hong Kong Science and Technology Innovation Cooperation Zone Shenzhen Park Project:HZQB-KCZYB-2020030the Guangdong Provincial Department of Science and Technology(Key-Area Research and Development Program of Guangdong Province)under the Grant 2020B090923002。
文摘Piezoelectricity in native bones has been well recognized as the key factor in bone regeneration.Thus,bio-piezoelectric materials have gained substantial attention in repairing damaged bone by mimicking the tissue’s electrical microenvironment(EM).However,traditional manufacturing strategies still encounter limitations in creating personalized bio-piezoelectric scaffolds,hindering their clinical applications.Three-dimensional(3D)/four-dimensional(4D)printing technology based on the principle of layer-by-layer forming and stacking of discrete materials has demonstrated outstanding advantages in fabricating bio-piezoelectric scaffolds in a more complex-shaped structure.Notably,4D printing functionality-shifting bio-piezoelectric scaffolds can provide a time-dependent programmable tissue EM in response to external stimuli for bone regeneration.In this review,we first summarize the physicochemical properties of commonly used bio-piezoelectric materials(including polymers,ceramics,and their composites)and representative biological findings for bone regeneration.Then,we discuss the latest research advances in the 3D printing of bio-piezoelectric scaffolds in terms of feedstock selection,printing process,induction strategies,and potential applications.Besides,some related challenges such as feedstock scalability,printing resolution,stress-to-polarization conversion efficiency,and non-invasive induction ability after implantation have been put forward.Finally,we highlight the potential of shape/property/functionality-shifting smart 4D bio-piezoelectric scaffolds in bone tissue engineering(BTE).Taken together,this review emphasizes the appealing utility of 3D/4D printed biological piezoelectric scaffolds as next-generation BTE implants.
基金supported by the General Research Fund(17200222,17208919,17204020)of the Research Grants Council of Hong Kongthe National Natural Science Foundation of China/Research Grants Council Joint Research Scheme(N_HKU743/22)the Seed Fund for Basic Research(201910159047,202111159097)of the University Research Committee(URC),The University of Hong Kong。
文摘The continual demand for modern optoelectronics with a high integration degree and customized functions has increased requirements for nanofabrication methods with high resolution,freeform,and mask-free.Meniscus-on-demand three-dimensional(3D)printing is a high-resolution additive manufacturing technique that exploits the ink meniscus formed on a printer nozzle and is suitable for the fabrication of micro/nanoscale 3D architectures.This method can be used for solution-processed 3D patterning of materials at a resolution of up to100 nm,which provides an excellent platform for fundamental scientific studies and various practical applications.This review presents recent advances in meniscus-on-demand 3D printing,together with historical perspectives and theoretical background on meniscus formation and stability.Moreover,this review highlights the capabilities of meniscus-on-demand 3D printing in terms of printable materials and potential areas of application,such as electronics and photonics.
基金supported by the National Key R&D Program of China(Grant No.2022YFB4601601)the Key R&D Program of Guangxi Province,China(Grant No.GKAB23026101)Guangxi Natural Science Foundation,China(Grant No.2023GXNSFBA026287).
文摘3D printing is a versatile technology capable of rapidly fabricating intricate geometric structures and enhancing the performance of flexible devices in comparison to conventional fabrication methods.However,3D-printed devices are susceptible to failure as a result of minuscule structural impairments,thereby impacting their overall durability.The utilization of self-healing,biodegradable materials in 3D printing holds immense potential for increasing the longevity and safety of devices,thereby expanding the application prospects for such devices.Nevertheless,enhancing the self-repairing capability of devices and refining the 3D printing performance of self-healing materials are still considerable challenges that need to be addressed to achieve optimal outcomes.This paper reviews recent developments in the field of advancements in 3D printing using self-healing and biodegradable materials.First,it investigates self-healing and biodegradable materials that are compatible with 3D printing techniques,discussing their printability,material properties,and factors that influence print quality.Then,it explores practical applications of selfhealing and biodegradable 3D printing technology in depth.Finally,it critically offers practical perspectives on this topic.
基金supported by the Key R&D Program of Guangxi Province(Grant No.GKAB23026101)Guangxi Natural Science Foundation(Grant No.2023GXNSFBA026287)the National Key R&D Program of China(No.2022YFB4601601).
文摘Aggregation-induced emission(AIE)materials exhibit remarkable emission properties in the aggregated or solid states,offering numerous advantages such as high quantum yield,excellent photostability,and low background signals.These characteristics have led to their widespread application in optoelectronic devices,bio-detection markers,chemical sensing,and stimuli-responsive applications among others.In contrast to traditional manufacturing processes,3D printing(3DP)enables rapid prototyping and large-scale customization with excellent flexibility in manufacturing techniques and material selection.The combination of AIE materials with 3DP can provide new strategies for fabricating materials and devices with complex structures.Therefore,3DP is an ideal choice for processing AIE organic luminescent materials.However,3DP of AIE materials is still in the early stages of development and is facing many challenges including limited printable AIE materials,poor printing functionalities and limited application range.This review aims to summarize the significant achievements in the field of 3DP of AIE materials.Firstly,different types of AIE materials for 3DP are studied,and the factors that affect the printing effect and the luminescence mechanism are discussed.Then,the latest advancements made in various application domains using 3D printed AIE materials are summarized.Finally,the existing challenges of this emerging field are discussed while the future prospects are prospected.
基金supported by the National Natural Science Foundation of China (51575267 and 51322509)the National Key Research and Development Program ‘‘Additive Manufacturing and Laser Manufacturing’’ (2016YFB1100101)+5 种基金the Top-Notch Young Talents Program of China, the NSFC-DFG Sino-German Research Project (GZ 1217)the Key Research and Development Program of Jiangsu Provincial Department of Science and Technology of China (BE2016181)the 333 High-level Talents Training Project (BRA2015368), the Aeronautical Science Foundation of China (2015ZE52051)the Outstanding Youth Foundation of Jiangsu Province of China (BK20130035)the Program for New Century Excellent Talents in University (NCET-13-0854)the Fundamental Research Funds for the Central Universities (NE2013103, NP2015206 and NZ2016108)
文摘Additive manufacturing(AM),interchangeably termed as3D printing(3DP),has been defined as one of the key technologies in the national development strategies of a number of countries around the world.America Makes,as the National Additive Manufacturing Innovation Institute,is the nation’s leading and collaborative partner in AM/3DP technology research,discovery,creation,and innovation,working efficiently to innovate and accelerate AM/3DP to increase America’s global manufacturing competitiveness(https://americamakes.us).German
基金The US AMRDEC grant No.W911NF-16-2-0069“Enhanced Absorption in Stopped-Light Photonic Nanostructures:Applications to Efficient Sensing”EU LASERLAB-EUROPE(grant agreement No.871124Horizon 2020 research and innovation programme)projects are acknowleged for the financial support.D.G.acknowledges the financial support from the European Social Fund(project No 09.3.3-LMT-K712-17-0016)under grant agreement with the Research Council of Lithuania(LMTLT).
文摘The current study is directed to the rapidly developing field of inorganic material 3D object production at nano-/micro scale.The fabrication method includes laser lithography of hybrid organic-inorganic materials with subsequent heat treatment leading to a variety of crystalline phases in 3D structures.In this work,it was examined a series of organometallic polymer precursors with different silicon(Si)and zirconium(Zr)molar ratios,ranging from 9:1 to 5:5,prepared via sol-gel method.All mixtures were examined for perspective to be used in 3D laser manufacturing by fabricating nano-and micro-feature sized structures.Their spatial downscaling and surface morphology were evaluated depending on chemical composition and crystallographic phase.The appearance of a crystalline phase was proven using single-crystal X-ray diffraction analysis,which revealed a lower crystallization temperature for microstructures compared to bulk materials.Fabricated 3D objects retained a complex geometry without any distortion after heat treatment up to 1400℃.Under the proper conditions,a wide variety of crystalline phases as well as zircon(ZrSiO_(4)-a highly stable material)can be observed.In addition,the highest new record of achieved resolution below 60 nm has been reached.The proposed preparation protocol can be used to manufacture micro/nano-devices with high precision and resistance to high temperature and aggressive environment.