期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
基于SLA和FDM的3D打印发动机风扇工艺与性能分析 被引量:10
1
作者 龚运息 《制造技术与机床》 北大核心 2015年第11期111-115,共5页
在新产品样件开发中,导入3D打印技术,以一款微型汽车发动机风扇快速成型制造为研究对象,简述了SLA和FDM2种3D打印快速成型方法的概念和原理,介绍了SLA和FDM2种不同的3D打印设备。探讨了基于SLA和FDM的发动机风扇3D打印过程及工艺方法,... 在新产品样件开发中,导入3D打印技术,以一款微型汽车发动机风扇快速成型制造为研究对象,简述了SLA和FDM2种3D打印快速成型方法的概念和原理,介绍了SLA和FDM2种不同的3D打印设备。探讨了基于SLA和FDM的发动机风扇3D打印过程及工艺方法,对比分析了SLA和FDM快速成型制造方法的特点和差异,并通过力学实验和高低温交变试验,对比验证SLA和FDM快速成型的发动机风扇产品的力学性能,总结了SLA和FDM的工艺特点,提出了新产品开发如何选择恰当的3D打印设备与工艺的建议。 展开更多
关键词 SLA FDM 3d打印 发动机风扇 性能分析
下载PDF
Dense ceramics with complex shape fabricated by 3D printing:A review 被引量:16
2
作者 Zhe Chen Xiaohong Sun +5 位作者 Yunpeng Shang Kunzhou Xiong Zhongkai Xu Ruisong Guo Shu Cai Chunming Zheng 《Journal of Advanced Ceramics》 SCIE CAS CSCD 2021年第2期195-218,共24页
Three-dimensional(3D)printing technology is becoming a promising method for fabricating highly complex ceramics owing to the arbitrary design and the infinite combination of materials.Insufficient density is one of th... Three-dimensional(3D)printing technology is becoming a promising method for fabricating highly complex ceramics owing to the arbitrary design and the infinite combination of materials.Insufficient density is one of the main problems with 3D printed ceramics,but concentrated descriptions of making dense ceramics are scarce.This review specifically introduces the principles of the four 3D printing technologies and focuses on the parameters of each technology that affect the densification of 3D printed ceramics,such as the performance of raw materials and the interaction between energy and materials.The technical challenges and suggestions about how to achieve higher ceramic density are presented subsequently.The goal of the presented work is to comprehend the roles of critical parameters in the subsequent 3D printing process to prepare dense ceramics that can meet the practical applications. 展开更多
关键词 3d printing dense ceramics particle characteristics process parameters
原文传递
Influence of curing conditions on the shrinkage behavior of three-dimensional printed concrete formwork
3
作者 M.BEKAERT K.van TITTELBOOM G.de SCHUTTER 《Frontiers of Structural and Civil Engineering》 SCIE EI CSCD 2024年第8期1225-1236,共12页
The use of three-dimensional(3D)printed concrete as formwork is becoming more widely applied within the industry.However,the technology is still not optimized and there are many reports of preliminary cracking during ... The use of three-dimensional(3D)printed concrete as formwork is becoming more widely applied within the industry.However,the technology is still not optimized and there are many reports of preliminary cracking during the curing of cast concrete.This is believed to result from differential shrinkage between the printed and cast concrete.These cracks(in the printed concrete or at the interface between the infill and printed concrete)form a preferential path for aggressive substances and can reduce the durability of the combined concrete element.To ensure the desired service life of the structure,it is important that the differential shrinkage between cast and printed concrete is understood.This study investigated the effect of curing conditions on the differential shrinkage behavior of 3D and cast concrete.The influence of prewetting of the dry-cured 3D printed formwork was also determined.In the experimental program,a vibrated and self-compacting concrete were used as cast material.Linear 3D printed formwork was produced and combined with cast concrete to simulate a concrete structure.Printed formwork was cured for 1,7,or 28 d exposed to the air(relative humidity:60%or 95%)or submerged in water.The length change of the combined elements was observed over 56 d after concrete casting and throughout the thickness of the materials.Results show that increasing the curing period in dry conditions of the printed concrete leads to an expansion of the formwork on the first day after casting.The expansion leads to a non-uniform strain evolution throughout the curing period of the combined element.Printed concrete formwork stored in wet conditions does not expand after the casting process but tends to show a decreasing linear deformation within the whole elements. 展开更多
关键词 3d concrete printing FORMWORK SHRINKAGE curing
原文传递
Experimental investigation on the deformation characteristics of locking-steel-pipe(LSP)pile retaining structure during excavation in sand 被引量:3
4
作者 Shi Wei Rongzhu Liang +6 位作者 Guoxiong Mei M.Hesham El Naggar Lianwei Sun Jinqing Jia Xiaohua Bao Xiaojian Wu Wenbing Wu 《Underground Space》 SCIE EI 2022年第6期1098-1114,共17页
Locking-steel-pipe(LSP)piles connect with adjacent joints to form a pile row enclosure structure.Due to the advantages of quick construction,efficiency in installation,and recycle utilization,the connected LSP piles a... Locking-steel-pipe(LSP)piles connect with adjacent joints to form a pile row enclosure structure.Due to the advantages of quick construction,efficiency in installation,and recycle utilization,the connected LSP piles are frequently used as retaining structure in deep excavation.However,systematic studies of the deformation mechanism of the LSP pile retaining structure are rarely reported,and it still lack of experimental evidence to optimize the design.In this study,a braced supported excavation experimental model test in sand was designed and conducted to investigate the deformation characteristics of LSP pile retaining structure.Three dimensional(3D)printing technique was creatively applied to manufacture LSP model piles.The experimental results show that,a“S”shaped distribution of bending moments is observed along pile shaft when excavation is executed;the deflection of pile shaft develops deep-seated movements toward the excavation side as excavation went deeper,resulting in a“bowl”ground settlement.With the deflection of LSP piles,a rotating trend was occurred between pairs of locking joint,and the severe open deformation of locking joint arose on excavation side.There was a gradual reduction in earth pressure behind the LSP pile retaining wall with excavation depth.The earth pressure between two struts level had no obvious changing,owing to the supported effect of inner struts. 展开更多
关键词 Locking-steel-pipe(LSP)piles Deep excavation Model test Deformation characteristics Three dimensional(3d)printing
原文传递
Energy Absorption Characteristics of a Novel Asymmetric and Rotatable Re-entrant Honeycomb Structure 被引量:1
5
作者 Huifeng Xi Jiachu Xu +1 位作者 Shende Cen Shiqing Huang 《Acta Mechanica Solida Sinica》 SCIE EI CSCD 2021年第4期550-560,共11页
Based on the symmetric re-entrant honeycomb(S-RH)structure with negative Poisson’s ratios,a novel asymmetric and rotatable re-entrant honeycomb(AR-RH)structure was proposed.Both the S-RH structure and AR-RH structure... Based on the symmetric re-entrant honeycomb(S-RH)structure with negative Poisson’s ratios,a novel asymmetric and rotatable re-entrant honeycomb(AR-RH)structure was proposed.Both the S-RH structure and AR-RH structure were produced by the 3D printing technology.Through experimental test and finite element simulation,the deformation mechanism and energy absorption characteristics of the AR-RH structure and the S-RH structure with negative Poisson’s ratios at different impact velocities were compared.The experimental test and finite element simulation results show that the novel AR-RH structure with negative Poisson’s ratios has stronger energy absorption capacity than the S-RH structure,and it has been verified that the rotatability of AR-RH can indeed absorb energy.Furthermore,the degree of asymmetry of the AR-RH structure was discussed. 展开更多
关键词 Asymmetric and rotatable re-entrant honeycomb structure Dynamic compression Energy absorption characteristics Metal 3d printing technology
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部