In order to study the successive deposition and solidification processes of uniform alloy droplets during the drop-on-demand three dimensional(3D) printing method,based on the volume of fluid(VOF) method,a 3D nume...In order to study the successive deposition and solidification processes of uniform alloy droplets during the drop-on-demand three dimensional(3D) printing method,based on the volume of fluid(VOF) method,a 3D numerical model was employed.In this model,the 7075 alloy with larger temperature range for phase change was used.The simulation results show that the successive deposition and solidification processes of uniform 7075 alloy droplets can be well characterized by this model.Simulated droplets shapes agree well with SEM images under the same condition.The effects of deposition and solidification of droplets result in vertical and L-shaped ridges on the surface of droplets,and tips of dendrites appear near the overlap of droplets due to rapid solidification.展开更多
With the constant change of fashion trends,interior design styles are changing day by day.Based on Unity3D technology,this paper develops a system for modern interior-style design and application.Taking the residentia...With the constant change of fashion trends,interior design styles are changing day by day.Based on Unity3D technology,this paper develops a system for modern interior-style design and application.Taking the residential interior as a case study,the interior style design is achieved through 3D modeling and texture rendering and then combined with the Unity3D engine to achieve scene roaming and interactive design.The system enables designers to express design concepts more intuitively and efficiently and also improves customer participation and satisfaction.Through the experience of designers and customers,the system is verified to have more practical value than traditional interior design solutions.展开更多
In recent years, the invert anomalies of operating railway tunnels in water-rich areas occur frequently,which greatly affect the transportation capacity of the railway lines. Tunnel drainage system is a crucial factor...In recent years, the invert anomalies of operating railway tunnels in water-rich areas occur frequently,which greatly affect the transportation capacity of the railway lines. Tunnel drainage system is a crucial factor to ensure the invert stability by regulating the external water pressure(EWP). By means of a threedimensional(3D) printing model, this paper experimentally investigates the deformation behavior of the invert for the tunnels with the traditional drainage system(TDS) widely used in China and its optimized drainage system(ODS) with bottom drainage function. Six test groups with a total of 110 test conditions were designed to consider the design factors and environmental factors in engineering practice,including layout of the drainage system, blockage of the drainage system and groundwater level fluctuation. It was found that there are significant differences in the water discharge, EWP and invert stability for the tunnels with the two drainage systems. Even with a dense arrangement of the external blind tubes, TDS was still difficult to eliminate the excessive EWP below the invert, which is the main cause for the invert instability. Blockage of drainage system further increased the invert uplift and aggravated the track irregularity, especially when the blockage degree is more than 50%. However, ODS can prevent these invert anomalies by reasonably controlling the EWP at tunnel bottom. Even when the groundwater level reached 60 m and the blind tubes were fully blocked, the invert stability can still be maintained and the railway track experienced a settlement of only 1.8 mm. Meanwhile, the on-site monitoring under several rainstorms further showed that the average EWP of the invert was controlled within 84 k Pa, while the maximum settlement of the track slab was only 0.92 mm, which also was in good agreement with the results of model test.展开更多
3D printing technology is an innovative manufacturing technology used in several disciplines, whose number and diversity are growing day by day. The development of devices to improve the accessibility of buildings an...3D printing technology is an innovative manufacturing technology used in several disciplines, whose number and diversity are growing day by day. The development of devices to improve the accessibility of buildings and urban spaces for people with disabilities through 3D priming technology is still not broadly explored. The present study is focused on filling this gap, with the realization of a tactile map of the MTE (Museum of Electrical Technology) of the University of Pavia (Italy) for blind and visually impaired people. The tactile map represents the building plan with all the information to guide the visit. The device is the result of a research process which is made by several steps and experimental tests, aimed at setting the best 3D priming profiles to meet all the requirements of the end-users. This paper describes methods and strategies applied to reach these goals: it underlines the social and technical approaches, the experimental phases and its possible future developments.展开更多
Facial wound segmentation plays a crucial role in preoperative planning and optimizing patient outcomes in various medical applications.In this paper,we propose an efficient approach for automating 3D facial wound seg...Facial wound segmentation plays a crucial role in preoperative planning and optimizing patient outcomes in various medical applications.In this paper,we propose an efficient approach for automating 3D facial wound segmentation using a two-stream graph convolutional network.Our method leverages the Cir3D-FaIR dataset and addresses the challenge of data imbalance through extensive experimentation with different loss functions.To achieve accurate segmentation,we conducted thorough experiments and selected a high-performing model from the trainedmodels.The selectedmodel demonstrates exceptional segmentation performance for complex 3D facial wounds.Furthermore,based on the segmentation model,we propose an improved approach for extracting 3D facial wound fillers and compare it to the results of the previous study.Our method achieved a remarkable accuracy of 0.9999993% on the test suite,surpassing the performance of the previous method.From this result,we use 3D printing technology to illustrate the shape of the wound filling.The outcomes of this study have significant implications for physicians involved in preoperative planning and intervention design.By automating facial wound segmentation and improving the accuracy ofwound-filling extraction,our approach can assist in carefully assessing and optimizing interventions,leading to enhanced patient outcomes.Additionally,it contributes to advancing facial reconstruction techniques by utilizing machine learning and 3D bioprinting for printing skin tissue implants.Our source code is available at https://github.com/SIMOGroup/WoundFilling3D.展开更多
With the development and progress of science and technology,road and bridge design has experienced rapid development,from the initial manual drawing design to the popularity of Computer-Aided Design(CAD),and then to t...With the development and progress of science and technology,road and bridge design has experienced rapid development,from the initial manual drawing design to the popularity of Computer-Aided Design(CAD),and then to today’s digital software design era.Early designers relied on hand-drawn paper design forms which was time-consuming and error-prone.Digital support for road and bridge design not only saves the design time but the design quality has also achieved a qualitative leap.This paper engages in the application of digital technology in road and bridge design,to provide technical reference for China’s road and bridge engineering design units,to promote the popularity of Civil3D and other advanced design software in the field of engineering design and development,ultimately contributing to the sustainable development of China’s road and bridge engineering.展开更多
Background: The integration of the current technology of CBCT and 3D CAD/CAM technology has great potential in the field of orthodontics, which is not yet fully investigated. The purpose of this article is to evaluate...Background: The integration of the current technology of CBCT and 3D CAD/CAM technology has great potential in the field of orthodontics, which is not yet fully investigated. The purpose of this article is to evaluate the accuracy of 3D printed retainers in comparison to vacuum formed retainers. Methods: Alginate impressions were taken for ten patients who have a CBCT scan. A 3D printed retainer and vacuum formed retainer were fabricated. Linear measure-ments were measured by two assessors using digital caliper. Every measure-ment on the 3D printed retainer was compared to the corresponding measure-ment on the thermoformed retainer. The linear measurements were Inter-canine width, Inter-premolar width (first and second premolars), Inter-molar width, Canine-midline length (both sides) and Canine-molar length (both sides). Intra-observer, and inter-observer reliability measurements were done. Results: Results showed excellent intra-observer reliability for the thermoformed retainer and the 3D printed retainer. Inter-observer measurements showed strong agreement between the measurements of the two assessors, for both retainers. The comparison of the thermoformed retainer to the 3D printed retainer showed high statistical agreement, except for the canine-molar on the right side, but with no clinical significance, p value of 0.038 and mean difference 0.19. Conclusions: The new method for fabricating a 3D printed retainer is accurate and reliable in comparison to the vacuum formed retainer (conventional method). CBCT proved to be efficient for fabrication of a custom made appliances.展开更多
Additive Manufacturing (AM) technologies have progressed in the past few years and many of them are now capable of producing functional parts instead of mere prototypes. AM provides a multitude of benefits, especially...Additive Manufacturing (AM) technologies have progressed in the past few years and many of them are now capable of producing functional parts instead of mere prototypes. AM provides a multitude of benefits, especially in design freedom. However, it still lacks industrial relevance because of the absence of comprehensive design rules for AM. Although AM is usually advertised as being the solution for all traditional manufacturing design limitations, the fact is that AM only replaces these limitations with a different set of restrictions. To fully exploit the advantages of AM, it is necessary to understand these limitations and consider them early during the design process. The establishment of design considerations in AM enables parts and process optimization. This paper discusses the design considerations that will lead to optimize part quality. Specifically, the work discusses the Fused Deposition Modeling (FDM) due to its common use and availability. These considerations are drawn from literature and from experiments done by the authors. The experiments done by the authors include an investigation for the influence of elevated service temperature on the performance of FDM PLA parts, benchmarking the capability of FDM to print overhangs and bridges without supports, studying the influence of processing parameters over dimensional accuracy, and the effect of processing parameters on the final FDM samples modulus of elasticity. The work presents a case study investigating the correct clearances for FDM parts and finally a redesign for AM case study of a support bracket originally manufactured using traditional manufacturing methods taking into consideration the design considerations discussed in this paper.展开更多
An effective and simple design method for co-continuous composite material construction is proposed by using a hybrid methodology with triply periodic minimal surface( TPMS) cellular topology and the volumetric distan...An effective and simple design method for co-continuous composite material construction is proposed by using a hybrid methodology with triply periodic minimal surface( TPMS) cellular topology and the volumetric distance field( VDF). After generating a set of VDF-based features for the given exterior shape and desired internal core structure,a series of simple modifications in distance fields enabled us to obtain an arbitrarily-shaped complex co-continuous composite material computational model. Design results and manufactured prototypes through 3 D printing technology show that the proposed methodology has the potential to open a new paradigm for producing multifunctional next generation co-continuous composite materials which are impossible to design and manufacture using traditional CAD and CAM.展开更多
With the advent of the information age,all walks of life have paid more and more attention to the development and application of digital technology.At the same time,the construction industry,which is a traditionally i...With the advent of the information age,all walks of life have paid more and more attention to the development and application of digital technology.At the same time,the construction industry,which is a traditionally important industry,is not an exception.A series of high-tech digital technologies have been widely used in architectural design and construction,such as BIM technology,3D printing technology,and VR technology.In view of the teaching link of architectural talent training,it is necessary to keep up with the development trend of the digital age,integrate these three kinds of technology into architectural teaching,and impart knowledge to students from planar 2D textbooks to 3D visual digital models,and further transform it from 3D digital to physical perceive or virtual simulation level,and reform teaching methods in all dimensions and in all dimensions to improve teaching effect.In this paper,the feasibility and necessity of integration of the above three architectural digital techniques into the teaching process of"building construction"from the aspects of teaching content,teaching method and teaching evaluation were discussed,and a new teaching model under the background of digital technology was proposed,which has certain teaching reference significance.展开更多
Background:The development of three-dimensional (3D) printing technology provides a new method for surgical treatment,but currently there are few reports on its application in the treatment of aneurysm.The aim of the ...Background:The development of three-dimensional (3D) printing technology provides a new method for surgical treatment,but currently there are few reports on its application in the treatment of aneurysm.The aim of the present study was to explore the materials and methods of fabricating 3D printed individual aneurysm model and its value in the treatment of intracranial aneurysm.Methods:Twenty-four patients with intracranial aneurysm diagnosed by CTA who had undergone operation in our hospital were analyzed retrospectively.CTA Data collected at the time of surgery was used for reconstruction.Soft Mimics 17.0 was used to reconstruct the thin layer CTA scan data into 3D image and the final data was sent to the 3D printer for fabricating the model.We compared the proposed 3D printed model-based preoperative plan and the actual approach used in the surgery based on CTA data to evaluate the value of the 3D printed model in preoperative planning,and picked out the materials which were more suitable for the clinic.Results:Twenty-four aneurysm models with high degree of reality were fabricated successfully with 3D-printing technology.The patients' blood vessels,skulls and aneurysms were printed into the reality model at a ratio of 1:1.It is reported that the soft material-based,3D printed vascular and aneurysm model more closely resembled the characteristics of the real blood vessels,thus provides a better simulation compared to the plaster-based model.Compared with the original operation plan,3D printed model could be used for pre-operative aneurysm clip selection,and provide more intuitive information in selection of operational approach.Conclusions:3D printed model can be used as an operational physical model to design operative schemes,choose the best operative paths and select suitable aneurysm clips by its high simulation degree and individualized characteristics.The model is helpful for surgical planning,especially for the preoperative plan of treating refractory multiple aneurysms and giant aneurysms.展开更多
As a physical interface,a prosthetic liner is commonly used as a transition material between the residual limb and the stiff socket.Typically made from a compliant material such as silicone,the main function of a pros...As a physical interface,a prosthetic liner is commonly used as a transition material between the residual limb and the stiff socket.Typically made from a compliant material such as silicone,the main function of a prosthetic liner is to protect the residual limb from injuries induced by load-bearing normal and shear stresses.Compared to conventional liners,custom prosthetic lower-extremity(LE)liners have been shown to better relieve stress concentrations in painful and sensitive regions of the residual limb.Although custom LE liners have been shown to offer clinical benefits,no review article on their design and efficacy has yet been written.To address this shortcoming in the literature,this paper provides a comprehensive survey of custom LE liner materials,design,and fabrication methods.First,custom LE liner materials and components are summarized,including a description of commercial liners and their efficacy.Subsequently,digital methods used to design and fabricate custom LE liners are addressed,including residual limb biomechanical modeling,finite element-based design methods,and 3-D printing techniques.Finally,current evaluation methods of custom/commercial LE liners are presented and discussed.We hope that this review article will inspire further research and development into the design and manufacture of custom LE liners.展开更多
The study critically examines the principles,mechanisms,and effectiveness of different damage control tech-niques in dealing with natural disasters,emphasizing their pivotal role in minimizing casualties and economic ...The study critically examines the principles,mechanisms,and effectiveness of different damage control tech-niques in dealing with natural disasters,emphasizing their pivotal role in minimizing casualties and economic losses.Each of these damage control techniques is mapped based on their applications and relevance in the key areas of natural disaster management.By utilizing various real-world instances,the present study shows that the effective implementation of various innovative techniques is shaping the space of natural disaster management in a global context.The integration of different innovative techniques into the existing natural disaster management system has improved the survival rate,economic performance,and sustainable development.The study finds that innovative disaster financing models,clear strategies,and creating awareness among communities can improve the overall efficiency of innovative techniques that are currently used for damage control during natural disaster events.Despite the substantial advantages of these creative strategies,the study acknowledges challenges such as financial constraints,unclear policy goals,and community adaptation requirements.The study also indicates that in the future,automatic damage restoration,quick prototyping,and additive engineering will play a vital role in controlling damage from catastrophic events,while it acknowledges limitations in temporal scope,generaliz-ability,andfinancial constraints.展开更多
基金Projects (51005186,51221001) supported by the National Natural Science Foundation of ChinaProject (85-TZ-2013) supported by the Research Fund of the State Key Laboratory of Solidification Processing(NWPU),ChinaProject (20126102110022) supported by the Doctoral Fund of Ministry of Education of China
文摘In order to study the successive deposition and solidification processes of uniform alloy droplets during the drop-on-demand three dimensional(3D) printing method,based on the volume of fluid(VOF) method,a 3D numerical model was employed.In this model,the 7075 alloy with larger temperature range for phase change was used.The simulation results show that the successive deposition and solidification processes of uniform 7075 alloy droplets can be well characterized by this model.Simulated droplets shapes agree well with SEM images under the same condition.The effects of deposition and solidification of droplets result in vertical and L-shaped ridges on the surface of droplets,and tips of dendrites appear near the overlap of droplets due to rapid solidification.
基金Research and Development of Wear-resistant Filament Monitoring System for Medicinal Core(Project No.:H20240260)Anqing Normal University Wanjiang Cultural Digital Protection and Intelligent Processing Key Laboratory Project,“Huangmei Opera Intelligent Digital Human Design and Application”+1 种基金Anqing Mayor Triangle Future Industry Research Institute Science and Technology Project,“Exploration of the Metaverse Design of Opera Culture and the Integration Model of Cultural Tourism”Anhui Provincial Social Science Innovation and Development Research Project,“Huangmei Opera Cultural Relics and Cultural Digital Native Protection and Utilization Innovation Research Project(Project No.:2023KY012)”。
文摘With the constant change of fashion trends,interior design styles are changing day by day.Based on Unity3D technology,this paper develops a system for modern interior-style design and application.Taking the residential interior as a case study,the interior style design is achieved through 3D modeling and texture rendering and then combined with the Unity3D engine to achieve scene roaming and interactive design.The system enables designers to express design concepts more intuitively and efficiently and also improves customer participation and satisfaction.Through the experience of designers and customers,the system is verified to have more practical value than traditional interior design solutions.
基金supported by the National Natural Science Foundation of China (Grant No. U1934211)the Open Foundation of National Engineering Research Center of High-speed Railway Construction Technology (Grant No. HSR202005)Scientific Research Project of Hunan Education Department (Grant No.20B596)。
文摘In recent years, the invert anomalies of operating railway tunnels in water-rich areas occur frequently,which greatly affect the transportation capacity of the railway lines. Tunnel drainage system is a crucial factor to ensure the invert stability by regulating the external water pressure(EWP). By means of a threedimensional(3D) printing model, this paper experimentally investigates the deformation behavior of the invert for the tunnels with the traditional drainage system(TDS) widely used in China and its optimized drainage system(ODS) with bottom drainage function. Six test groups with a total of 110 test conditions were designed to consider the design factors and environmental factors in engineering practice,including layout of the drainage system, blockage of the drainage system and groundwater level fluctuation. It was found that there are significant differences in the water discharge, EWP and invert stability for the tunnels with the two drainage systems. Even with a dense arrangement of the external blind tubes, TDS was still difficult to eliminate the excessive EWP below the invert, which is the main cause for the invert instability. Blockage of drainage system further increased the invert uplift and aggravated the track irregularity, especially when the blockage degree is more than 50%. However, ODS can prevent these invert anomalies by reasonably controlling the EWP at tunnel bottom. Even when the groundwater level reached 60 m and the blind tubes were fully blocked, the invert stability can still be maintained and the railway track experienced a settlement of only 1.8 mm. Meanwhile, the on-site monitoring under several rainstorms further showed that the average EWP of the invert was controlled within 84 k Pa, while the maximum settlement of the track slab was only 0.92 mm, which also was in good agreement with the results of model test.
文摘3D printing technology is an innovative manufacturing technology used in several disciplines, whose number and diversity are growing day by day. The development of devices to improve the accessibility of buildings and urban spaces for people with disabilities through 3D priming technology is still not broadly explored. The present study is focused on filling this gap, with the realization of a tactile map of the MTE (Museum of Electrical Technology) of the University of Pavia (Italy) for blind and visually impaired people. The tactile map represents the building plan with all the information to guide the visit. The device is the result of a research process which is made by several steps and experimental tests, aimed at setting the best 3D priming profiles to meet all the requirements of the end-users. This paper describes methods and strategies applied to reach these goals: it underlines the social and technical approaches, the experimental phases and its possible future developments.
文摘Facial wound segmentation plays a crucial role in preoperative planning and optimizing patient outcomes in various medical applications.In this paper,we propose an efficient approach for automating 3D facial wound segmentation using a two-stream graph convolutional network.Our method leverages the Cir3D-FaIR dataset and addresses the challenge of data imbalance through extensive experimentation with different loss functions.To achieve accurate segmentation,we conducted thorough experiments and selected a high-performing model from the trainedmodels.The selectedmodel demonstrates exceptional segmentation performance for complex 3D facial wounds.Furthermore,based on the segmentation model,we propose an improved approach for extracting 3D facial wound fillers and compare it to the results of the previous study.Our method achieved a remarkable accuracy of 0.9999993% on the test suite,surpassing the performance of the previous method.From this result,we use 3D printing technology to illustrate the shape of the wound filling.The outcomes of this study have significant implications for physicians involved in preoperative planning and intervention design.By automating facial wound segmentation and improving the accuracy ofwound-filling extraction,our approach can assist in carefully assessing and optimizing interventions,leading to enhanced patient outcomes.Additionally,it contributes to advancing facial reconstruction techniques by utilizing machine learning and 3D bioprinting for printing skin tissue implants.Our source code is available at https://github.com/SIMOGroup/WoundFilling3D.
文摘With the development and progress of science and technology,road and bridge design has experienced rapid development,from the initial manual drawing design to the popularity of Computer-Aided Design(CAD),and then to today’s digital software design era.Early designers relied on hand-drawn paper design forms which was time-consuming and error-prone.Digital support for road and bridge design not only saves the design time but the design quality has also achieved a qualitative leap.This paper engages in the application of digital technology in road and bridge design,to provide technical reference for China’s road and bridge engineering design units,to promote the popularity of Civil3D and other advanced design software in the field of engineering design and development,ultimately contributing to the sustainable development of China’s road and bridge engineering.
文摘Background: The integration of the current technology of CBCT and 3D CAD/CAM technology has great potential in the field of orthodontics, which is not yet fully investigated. The purpose of this article is to evaluate the accuracy of 3D printed retainers in comparison to vacuum formed retainers. Methods: Alginate impressions were taken for ten patients who have a CBCT scan. A 3D printed retainer and vacuum formed retainer were fabricated. Linear measure-ments were measured by two assessors using digital caliper. Every measure-ment on the 3D printed retainer was compared to the corresponding measure-ment on the thermoformed retainer. The linear measurements were Inter-canine width, Inter-premolar width (first and second premolars), Inter-molar width, Canine-midline length (both sides) and Canine-molar length (both sides). Intra-observer, and inter-observer reliability measurements were done. Results: Results showed excellent intra-observer reliability for the thermoformed retainer and the 3D printed retainer. Inter-observer measurements showed strong agreement between the measurements of the two assessors, for both retainers. The comparison of the thermoformed retainer to the 3D printed retainer showed high statistical agreement, except for the canine-molar on the right side, but with no clinical significance, p value of 0.038 and mean difference 0.19. Conclusions: The new method for fabricating a 3D printed retainer is accurate and reliable in comparison to the vacuum formed retainer (conventional method). CBCT proved to be efficient for fabrication of a custom made appliances.
文摘Additive Manufacturing (AM) technologies have progressed in the past few years and many of them are now capable of producing functional parts instead of mere prototypes. AM provides a multitude of benefits, especially in design freedom. However, it still lacks industrial relevance because of the absence of comprehensive design rules for AM. Although AM is usually advertised as being the solution for all traditional manufacturing design limitations, the fact is that AM only replaces these limitations with a different set of restrictions. To fully exploit the advantages of AM, it is necessary to understand these limitations and consider them early during the design process. The establishment of design considerations in AM enables parts and process optimization. This paper discusses the design considerations that will lead to optimize part quality. Specifically, the work discusses the Fused Deposition Modeling (FDM) due to its common use and availability. These considerations are drawn from literature and from experiments done by the authors. The experiments done by the authors include an investigation for the influence of elevated service temperature on the performance of FDM PLA parts, benchmarking the capability of FDM to print overhangs and bridges without supports, studying the influence of processing parameters over dimensional accuracy, and the effect of processing parameters on the final FDM samples modulus of elasticity. The work presents a case study investigating the correct clearances for FDM parts and finally a redesign for AM case study of a support bracket originally manufactured using traditional manufacturing methods taking into consideration the design considerations discussed in this paper.
基金Sponsored by the Scientific Research Foundation of the Higher Education Institutions of Hainan Province of China(Grant No.Hnky2018-101)
文摘An effective and simple design method for co-continuous composite material construction is proposed by using a hybrid methodology with triply periodic minimal surface( TPMS) cellular topology and the volumetric distance field( VDF). After generating a set of VDF-based features for the given exterior shape and desired internal core structure,a series of simple modifications in distance fields enabled us to obtain an arbitrarily-shaped complex co-continuous composite material computational model. Design results and manufactured prototypes through 3 D printing technology show that the proposed methodology has the potential to open a new paradigm for producing multifunctional next generation co-continuous composite materials which are impossible to design and manufacture using traditional CAD and CAM.
基金Supported by the Teaching Reform Project of Jiangxi Normal University(Exploration and Research on the Practical Teaching Reform of Building Construction Course)
文摘With the advent of the information age,all walks of life have paid more and more attention to the development and application of digital technology.At the same time,the construction industry,which is a traditionally important industry,is not an exception.A series of high-tech digital technologies have been widely used in architectural design and construction,such as BIM technology,3D printing technology,and VR technology.In view of the teaching link of architectural talent training,it is necessary to keep up with the development trend of the digital age,integrate these three kinds of technology into architectural teaching,and impart knowledge to students from planar 2D textbooks to 3D visual digital models,and further transform it from 3D digital to physical perceive or virtual simulation level,and reform teaching methods in all dimensions and in all dimensions to improve teaching effect.In this paper,the feasibility and necessity of integration of the above three architectural digital techniques into the teaching process of"building construction"from the aspects of teaching content,teaching method and teaching evaluation were discussed,and a new teaching model under the background of digital technology was proposed,which has certain teaching reference significance.
文摘Background:The development of three-dimensional (3D) printing technology provides a new method for surgical treatment,but currently there are few reports on its application in the treatment of aneurysm.The aim of the present study was to explore the materials and methods of fabricating 3D printed individual aneurysm model and its value in the treatment of intracranial aneurysm.Methods:Twenty-four patients with intracranial aneurysm diagnosed by CTA who had undergone operation in our hospital were analyzed retrospectively.CTA Data collected at the time of surgery was used for reconstruction.Soft Mimics 17.0 was used to reconstruct the thin layer CTA scan data into 3D image and the final data was sent to the 3D printer for fabricating the model.We compared the proposed 3D printed model-based preoperative plan and the actual approach used in the surgery based on CTA data to evaluate the value of the 3D printed model in preoperative planning,and picked out the materials which were more suitable for the clinic.Results:Twenty-four aneurysm models with high degree of reality were fabricated successfully with 3D-printing technology.The patients' blood vessels,skulls and aneurysms were printed into the reality model at a ratio of 1:1.It is reported that the soft material-based,3D printed vascular and aneurysm model more closely resembled the characteristics of the real blood vessels,thus provides a better simulation compared to the plaster-based model.Compared with the original operation plan,3D printed model could be used for pre-operative aneurysm clip selection,and provide more intuitive information in selection of operational approach.Conclusions:3D printed model can be used as an operational physical model to design operative schemes,choose the best operative paths and select suitable aneurysm clips by its high simulation degree and individualized characteristics.The model is helpful for surgical planning,especially for the preoperative plan of treating refractory multiple aneurysms and giant aneurysms.
基金supported by the Fundamental Research Funds for the Central Universities(Grant number JKF-YG-22-B010)the National Institutes of Health(Grant number 5R01EB024531-03).
文摘As a physical interface,a prosthetic liner is commonly used as a transition material between the residual limb and the stiff socket.Typically made from a compliant material such as silicone,the main function of a prosthetic liner is to protect the residual limb from injuries induced by load-bearing normal and shear stresses.Compared to conventional liners,custom prosthetic lower-extremity(LE)liners have been shown to better relieve stress concentrations in painful and sensitive regions of the residual limb.Although custom LE liners have been shown to offer clinical benefits,no review article on their design and efficacy has yet been written.To address this shortcoming in the literature,this paper provides a comprehensive survey of custom LE liner materials,design,and fabrication methods.First,custom LE liner materials and components are summarized,including a description of commercial liners and their efficacy.Subsequently,digital methods used to design and fabricate custom LE liners are addressed,including residual limb biomechanical modeling,finite element-based design methods,and 3-D printing techniques.Finally,current evaluation methods of custom/commercial LE liners are presented and discussed.We hope that this review article will inspire further research and development into the design and manufacture of custom LE liners.
文摘The study critically examines the principles,mechanisms,and effectiveness of different damage control tech-niques in dealing with natural disasters,emphasizing their pivotal role in minimizing casualties and economic losses.Each of these damage control techniques is mapped based on their applications and relevance in the key areas of natural disaster management.By utilizing various real-world instances,the present study shows that the effective implementation of various innovative techniques is shaping the space of natural disaster management in a global context.The integration of different innovative techniques into the existing natural disaster management system has improved the survival rate,economic performance,and sustainable development.The study finds that innovative disaster financing models,clear strategies,and creating awareness among communities can improve the overall efficiency of innovative techniques that are currently used for damage control during natural disaster events.Despite the substantial advantages of these creative strategies,the study acknowledges challenges such as financial constraints,unclear policy goals,and community adaptation requirements.The study also indicates that in the future,automatic damage restoration,quick prototyping,and additive engineering will play a vital role in controlling damage from catastrophic events,while it acknowledges limitations in temporal scope,generaliz-ability,andfinancial constraints.