The new-generation electronic components require a balance between electromagnetic interference shielding efficiency and open structure factors such as ventilation and heat dissipation.In addition,realizing the tunabl...The new-generation electronic components require a balance between electromagnetic interference shielding efficiency and open structure factors such as ventilation and heat dissipation.In addition,realizing the tunable shielding of porous shields over a wide range of wavelengths is even more challenging.In this study,the well-prepared thermoplastic polyurethane/carbon nanotubes composites were used to fabricate the novel periodic porous flexible metamaterials using fused deposition modeling 3D printing.Particularly,the investigation focuses on optimization of pore geometry,size,dislocation configuration and material thickness,thus establishing a clear correlation between structural parameters and shielding property.Both experimental and simulation results have validated the superior shielding performance of hexagon derived honeycomb structure over other designs,and proposed the failure shielding size(D_(f)≈λ/8-λ/5)and critical inclined angle(θf≈43°-48°),which could be used as new benchmarks for tunable electromagnetic shielding.In addition,the proper regulation of the material thickness could remarkably enhance the maximum shielding capability(85-95 dB)and absorption coefficient A(over 0.83).The final innovative design of the porous shielding box also exhibits good shielding effectiveness across a broad frequency range(over 2.4 GHz),opening up novel pathways for individualized and diversified shielding solutions.展开更多
The tireless pursuit of supercapacitors with high energy density entails the parallel advancement of wellsuited electrode materials and elaborately engineered architectures.Polypyrrole(PPy)emerges as an exceedingly co...The tireless pursuit of supercapacitors with high energy density entails the parallel advancement of wellsuited electrode materials and elaborately engineered architectures.Polypyrrole(PPy)emerges as an exceedingly conductive polymer and a prospective pseudocapacitive materials for supercapacitors,yet the inferior cyclic stability and unpredictable polymerization patterns severely impede its real-world applicability.Here,for the first time,an innovative seed-induced in-situ polymerization assisted 3D printing strategy is proposed to fabricate PPy-reduced graphene oxide/poly(vinylidene difluoride-cohexafluoropropylene)(PVDF-HFP)(PPy-rGO/PH)electrodes with controllable polymerization behavior and exceptional areal mass loading.The preferred active sites uniformly pre-planted on the 3D-printed graphene substrates serve as reliable seeds to induce efficient polypyrrole deposition,achieving an impressive mass loading of 185.6 mg cm^(-2)(particularly 79.2 mg cm^(-2)for polypyrrole)and a superior areal capacitance of 25.2 F cm^(-2)at 2 mA cm^(-2)for a 12-layer electrode.In agreement with theses appealing features,an unprecedented areal energy density of 1.47 mW h cm^(-2)for a symmetrical device is registered,a rarely achieved value for other PPy/rGO-based supercapacitors.This work highlights a promising route to preparing high energy density energy storage modules for real-world applications.展开更多
The existence of joints or other kinds of discontinuities has a dramatic efect on the stability of rock excavations and engineering.As a result,a great challenge in rock mass mechanics testing is to prepare rock or ro...The existence of joints or other kinds of discontinuities has a dramatic efect on the stability of rock excavations and engineering.As a result,a great challenge in rock mass mechanics testing is to prepare rock or rock-like samples with defects.In recent years,3D printing technology has become a promising tool in the feld of rock mass mechanics and engineering.This study frst reviews and discusses the research status of traditional test methods in rock mass mechanics tests of making rock samples with defects.Then,based on the comprehensive analysis of previous research,the application of 3D printing technology in rock mass mechanics is expounded from the following three aspects.The frst is the printing material.Although there are many materials for 3D printing,it has been found that 3D printing materials that can be used for rock mass mechanics research are very limited.After research,we summarize and evaluate printing material that can be used for rock mass mechanics studies.The second is the printing methodology,which mainly introduces the current application forms of 3D printing technology in rock mass mechanics.This includes printed precise casting molds and one-time printed samples.The last one is the printing model,which includes small-scale samples for mechanical tests and large-scale physical models.Then,the benefts and drawbacks of using 3D printing samples in mechanical tests and the validity of their simulation of real rock are discussed.Compared with traditional rock samples collected in nature or synthetic rock-like samples,the samples made by 3D printing technology have unique advantages,such as higher test repeatability,visualization of rock internal structure and stress distribution.There is thus great potential for the use of 3D printing in the feld of rock mass mechanics.However,3D printing materials also have shortcomings,such as insufcient material strength and accuracy at this stage.Finally,the application prospect of 3D printing technology in rock mass mechanics research is proposed.展开更多
In recent years, additive manufacturing (AM), known as “3D printing”, has experienced exceptional growth thanks to the development of mechatronics and materials science. Fused filament deposition (FDM) manufacturing...In recent years, additive manufacturing (AM), known as “3D printing”, has experienced exceptional growth thanks to the development of mechatronics and materials science. Fused filament deposition (FDM) manufacturing is the most widely used technique in the field of AM, due to low operating and material costs. However, the materials commonly used for this technology are virgin thermoplastics. It is worth noting a considerable amount of waste exists due to failed print and disposable prototypes. In this regard, using green and sustainable materials is essential to limit the impact on the environment. The recycled, bio-based, and blended recycled materials are therefore a potential approach for 3D printing. In contrast, the lack of understanding of the mechanism of interlayer adhesion and the degradation of materials for FDM printing has posed a major challenge for these green materials. This paper provides an overview of the FDM technique and material requirements for 3D printing filaments. The main objective is to highlight the advantages and disadvantages of using recycled, bio-based, and blended materials based on thermoplastics for 3D printing filaments. In this work, solutions to improve the mechanical properties of 3D printing parts before, during, and after the printing process are pointed out. This paper provides an overview on choosing which materials and solutions depend on the specific application purposes. Moreover, research gaps and opportunities are mentioned in the discussion and conclusions sections of this study.展开更多
Over millions of years of evolution,nature has created organisms with overwhelming performances due to their unique materials and structures,providing us with valuable inspirations for the development of next-generati...Over millions of years of evolution,nature has created organisms with overwhelming performances due to their unique materials and structures,providing us with valuable inspirations for the development of next-generation biomedical devices.As a promising new technology,3D printing enables the fabrication of multiscale,multi-material,and multi-functional threedimensional(3D)biomimetic materials and structures with high precision and great flexibility.The manufacturing challenges of biomedical devices with advanced biomimetic materials and structures for various applications were overcome with the flourishing development of 3D printing technologies.In this paper,the state-of-the-art additive manufacturing of biomimetic materials and structures in the field of biomedical engineering were overviewed.Various kinds of biomedical applications,including implants,lab-on-chip,medicine,microvascular network,and artificial organs and tissues,were respectively discussed.The technical challenges and limitations of biomimetic additive manufacturing in biomedical applications were further investigated,and the potential solutions and intriguing future technological developments of biomimetic 3D printing of biomedical devices were highlighted.展开更多
At present,the clinical reconstruction of the auricle usually adopts the strategy of taking autologous costal cartilage.This method has great trauma to patients,poor plasticity and inaccurate shaping.Three-dimensional...At present,the clinical reconstruction of the auricle usually adopts the strategy of taking autologous costal cartilage.This method has great trauma to patients,poor plasticity and inaccurate shaping.Three-dimensional(3D)printing technology has made a great breakthrough in the clinical application of orthopedic implants.This study explored the combination of 3D printing and tissue engineering to precisely reconstruct the auricle.First,a polylactic acid(PLA)polymer scaffold with a precisely customized patient appearance was fabricated,and then auricle cartilage fragments were loaded into the 3D-printed porous PLA scaffold to promote auricle reconstruction.In vitro,gelatin methacrylamide(GelMA)hydrogels loaded with different sizes of rabbit ear cartilage fragments were studied to assess the regenerative activity of various autologous cartilage fragments.In vivo,rat ear cartilage fragments were placed in an accurately designed porous PLA polymer ear scaffold to promote auricle reconstruction.The results indicated that the chondrocytes in the cartilage fragments could maintain the morphological phenotype in vitro.After three months of implantation observation,it was conducive to promoting the subsequent regeneration of cartilage in vivo.The autologous cartilage fragments combined with 3D printing technology show promising potential in auricle reconstruction.展开更多
4D printing is proposed based on the additive manufacturing of stimuli-responsive materials and structures,which can realize shape changing upon external stimuli.This article reviews the 4D printing methods and actuat...4D printing is proposed based on the additive manufacturing of stimuli-responsive materials and structures,which can realize shape changing upon external stimuli.This article reviews the 4D printing methods and actuating performances of 4D printing structures based on shape memory polymers,hydrogels,liquid crystal elastomers,and electroactive polymers.This article shows that the shape morphing properties of single materials are limited,while 4D printing of composites can integrate the various driving modes of different smart materials.In the end,challenges facing 4D printing such as broadening the scope of smart materials,improving printing processes,the compatibility of printing different materials have been discussed.展开更多
Tissue engineering is an emerging means for resolving the problems of tissue repair and organ replacement in regenerative medicine.Insufficient supply of nutrients and oxygen to cells in large-scale tissues has led to...Tissue engineering is an emerging means for resolving the problems of tissue repair and organ replacement in regenerative medicine.Insufficient supply of nutrients and oxygen to cells in large-scale tissues has led to the demand to prepare blood vessels.Scaffold-based tissue engineering approaches are effective methods to form new blood vessel tissues.The demand for blood vessels prompts systematic research on fabrication strategies of vascular scaffolds for tissue engineering.Recent advances in 3D printing have facilitated fabrication of vascular scaffolds,contributing to broad prospects for tissue vascularization.This review presents state of the art on modeling methods,print materials and preparation processes for fabrication of vascular scaffolds,and discusses the advantages and application fields of each method.Specially,significance and importance of scaffold-based tissue engineering for vascular regeneration are emphasized.Print materials and preparation processes are discussed in detail.And a focus is placed on preparation processes based on 3D printing technologies and traditional manufacturing technologies including casting,electrospinning,and Lego-like construction.And related studies are exemplified.Transformation of vascular scaffolds to clinical application is discussed.Also,four trends of 3D printing of tissue engineering vascular scaffolds are presented,including machine learning,near-infrared photopolymerization,4D printing,and combination of self-assembly and 3D printing-based methods.展开更多
Donor shortages for organ transplantations are a major clinical challenge worldwide. Potential risks that are inevitably encountered with traditional methods include complications, secondary injuries, and limited sour...Donor shortages for organ transplantations are a major clinical challenge worldwide. Potential risks that are inevitably encountered with traditional methods include complications, secondary injuries, and limited source donors. Three-dimensional (3D) printing technology holds the potential to solve these limitations; it can he used to rapidly manufacture personalized tissue engineering scaffolds, repair tissue defects in situ with cells, and even directly print tissue and organs. Such printed implants and organs not only perfectly match the patient's damaged tissue, hut can also have engineered material microstructures and cell arrangements to promote cell growth and differentiation. Thus, such implants allow the desired tissue repair to he achieved, and could eventually solve the donor-shortage problem. This review summarizes relevant studies and recent progress on four levels, introduces different types of biomedical materials, and discusses existing problems and development issues with 3D printing that are related to materials and to the construction of extracellular matrix in vitro for medical applications.展开更多
Since 3D printed hard materials could match the shape of bone,cell survival and fate determination towards osteoblasts in such materials have become a popular research target.In this study,a scaffold of hardmaterial f...Since 3D printed hard materials could match the shape of bone,cell survival and fate determination towards osteoblasts in such materials have become a popular research target.In this study,a scaffold of hardmaterial for 3D fabrication was designed to regulate developmental signal(Notch)transduction guiding osteoblast differentiation.We established a polycaprolactone(PCL)and cell-integrated 3D printing system(PCI3D)to reciprocally print the beams of PCL and cell-laden hydrogel for a module.This PCI3D module holds good cell viability of over 87%,whereas cells show about sixfold proliferation in a 7-day culture.The osteocytic MLO-Y4 was engineered to overexpress Notch ligand Dll4,making up 25%after mixing with 75%stromal cells in the PCI3D module.Osteocytic Dll4,unlike other delta-like family members such as Dll1 or Dll3,promotes osteoblast differentiation and themineralization of primary mouse and a cell line of bone marrow stromal cells when cultured in a PCI3D module for up to 28 days.Mechanistically,osteocytic Dll4 could not promote osteogenic differentiation of the primary bone marrow stromal cells(BMSCs)after conditional deletion of the Notch transcription factor RBPjκby Cre recombinase.These data indicate that osteocytic Dll4 activates RBPjκ-dependent canonical Notch signaling in BMSCs for their oriented differentiation towards osteoblasts.Additionally,osteocytic Dll4 holds a great potential for angiogenesis in human umbilical vein endothelial cells within modules.Our study reveals that osteocytic Dll4 could be the osteogenic niche determining cell fate towards osteoblasts.This will open a new avenue to overcome the current limitation of poor cell viability and low bioactivity of traditional orthopedic implants.展开更多
3D printing technology is an emerging technology.It constructs solid bodies by stacking materials layer by layer,and can quickly and accurately prepare bone tissue engineering scaffolds with specific shapes and struct...3D printing technology is an emerging technology.It constructs solid bodies by stacking materials layer by layer,and can quickly and accurately prepare bone tissue engineering scaffolds with specific shapes and structures to meet the needs of different patients.The field of life sciences has received a great deal of attention.However,different 3D printing technologies and materials have their advantages and disadvantages,and there are limitations in clinical application.In this paper,the technology,materials and clinical applications of 3D printed bone tissue engineering scaffolds are reviewed,and the future development trends and challenges in this field are prospected.展开更多
Four-dimensional printing allows for the transformation capabilities of 3D-printed architectures over time,altering their shape,properties,or function when exposed to external stimuli.This interdisciplinary technology...Four-dimensional printing allows for the transformation capabilities of 3D-printed architectures over time,altering their shape,properties,or function when exposed to external stimuli.This interdisciplinary technology endows the 3D architectures with unique functionalities,which has generated excitement in diverse research fields,such as soft robotics,biomimetics,biomedical devices,and sensors.Understanding the selection of the material,architectural designs,and employed stimuli is crucial to unlocking the potential of smart customization with 4D printing.This review summarizes recent significant developments in 4D printing and establishes links between smart materials,3D printing techniques,programmable structures,diversiform stimulus,and new functionalities for multidisciplinary applications.We start by introducing the advanced features of 4D printing and the key technological roadmap for its implementation.We then place considerable emphasis on printable smart materials and structural designs,as well as general approaches to designing programmable structures.We also review stimulus designs in smart materials and their associated stimulus-responsive mechanisms.Finally,we discuss new functionalities of 4D printing for potential applications and further development directions.展开更多
Recent years are showing a rapid adoption of digital manufacturing techniques to the construction industry,with a focus on additive manufacturing.Although 3D printing for construction(3DPC)has notably advanced in rece...Recent years are showing a rapid adoption of digital manufacturing techniques to the construction industry,with a focus on additive manufacturing.Although 3D printing for construction(3DPC)has notably advanced in recent years,publications on the subject are recent and date a growth in 2019,indicating that it is a promising technology as it enables greater efficiency with fair consumption of material,minimization of waste generation,encouraging the construction industrialization and enhancing and accelerating the constructive process.This new building system not only gives an optimization of the building process but provides a new approach to the building design materiality.The direct connection between design and manufacturing allows the reduction in the number of the various construction phases needed.It is opening a new and wide range of options both formal and chromatic in customization,avoiding complex formworks,reducing costs and manufacturing time.The creative process has a strict and direct link with the constructive process,straightening design with its materiality.Cement-based materials lead the way,but new alternatives are being explored to further reduce its carbon footprint.In order to leverage its sustainability and enhance the system capacity,initiatives are being pursued to allow the reduction of the use of PC.Geopolimers are taking the first steps in 3DPC.Construction and Demolition Waste(CDW)materials are used to substitute natural aggregates.Even soil is being explored has a structural and aesthetic material.These research trends are opening a wider range of possibilities for architecture and design,broadening the spectrum of color,texture,and formal variations.The concern about textures and colours is not yet evident in many the structures already printed,opening the opportunity for future research.More can be done in the mixture and formal design of this building system,“discovering”other raw materials in others waste.This article aims to make a critical review of technologies,materials and methodologies to support the development of new sustainable materials to be used as a plastic element in the printed structure.A roadmap of 3D printing for construction is presented,and an approach on mix design,properties in the fresh and hardened state,highlighting the possibilities for obtaining alternative materials are pointed.With this review possible directions are presented to find solutions to enhance the sustainability of this system discovering“new”materiality for architecture and design.展开更多
In recent few years, significant improvement has been made in developing largescale 3D printers to accommodate the need of industrial-scale 3D printing. It is of great feasibility to construct structural components an...In recent few years, significant improvement has been made in developing largescale 3D printers to accommodate the need of industrial-scale 3D printing. It is of great feasibility to construct structural components and buildings by means of 3D concrete printing. The major issues of this innovative technique focus on the preparation and optimization of concrete materials which possess favourable printable properties as well as the measurement and evaluation methods of their workability. This paper firstly introduces three largescale 3D printing systems that have been successfully applied in construction industry. It then summarizes the commonly used raw materials in concrete manufacturing. Critical factors that should be particularly controlled in material preparation are specified. Easy-extrusive, easy-flowing, well-buildable, proper setting time and low shrinkage are significant for concrete mixture to meet the critical requirements of a freeform construction process. Thereafter, measuring methods that can be employed to assess the fresh and hardened properties of concrete at early stages are suggested. Finally, a few of evaluation methods are presented which may offer certain assistance for optimizing material preparation. The objective of this work is to review current design methodologies and experimental measurement and evaluation methods for 3D printable concrete materials and promote its responsible use with largescale 3D printing technology.展开更多
Additive manufacturing(AM),interchangeably termed as3D printing(3DP),has been defined as one of the key technologies in the national development strategies of a number of countries around the world.America Makes,as th...Additive manufacturing(AM),interchangeably termed as3D printing(3DP),has been defined as one of the key technologies in the national development strategies of a number of countries around the world.America Makes,as the National Additive Manufacturing Innovation Institute,is the nation’s leading and collaborative partner in AM/3DP technology research,discovery,creation,and innovation,working efficiently to innovate and accelerate AM/3DP to increase America’s global manufacturing competitiveness(https://americamakes.us).German展开更多
Tissue engineering(TE)continues to be widely explored as a potential solution to meet critical clinical needs for diseased tissue replacement and tissue regeneration.In this study,we developed a poly(2-hydroxyethyl me...Tissue engineering(TE)continues to be widely explored as a potential solution to meet critical clinical needs for diseased tissue replacement and tissue regeneration.In this study,we developed a poly(2-hydroxyethyl methacrylate-co-methacrylic acid)(pHEMA-co-MAA)based hydrogel loaded with newly synthesized conductive poly(3,4-ethylene-dioxythiophene)(PEDOT)and polypyrrole(PPy)nanoparticles(NPs),and subsequently processed these hydrogels into tissue engineered constructs via three-dimensional(3D)printing.The presence of the NPs was critical as they altered the rheological properties during printing.However,all samples exhibited suitable shear thinning properties,allowing for the development of an optimized processing window for 3D printing.Samples were 3D printed into pre-determined disk-shaped configurations of 2 and 10 mm in height and diameter,respectively.We observed that the NPs disrupted the gel crosslinking efficiencies,leading to shorter degradation times and compressive mechanical properties ranging between 450 and 550 kPa.The conductivity of the printed hydrogels increased along with the NP concentration to(5.10±0.37)×10^(−7)S/cm.In vitro studies with cortical astrocyte cell cultures demonstrated that exposure to the pHEMA-co-MAA NP hydrogels yielded high cellular viability and proliferation rates.Finally,hydrogel antimicrobial studies with staphylococcus epidermidis bacteria revealed that the developed hydrogels affected bacterial growth.Taken together,these materials show promise for various TE strategies.展开更多
In recent few years, significant improvement has been made in developing largescale 3 D printer to accommodate the need of industrial-scale 3 D printing. Cementitious materials that are compatible with 3 D printing pr...In recent few years, significant improvement has been made in developing largescale 3 D printer to accommodate the need of industrial-scale 3 D printing. Cementitious materials that are compatible with 3 D printing promote rapid application of this innovative technique in the construction field with advantages of cost effective, high efficiency, design flexibility and environmental friendly. This paper firstly reviews existing 3 D printing techniques that are currently being used in commercial3 D printers. It then summarizes three latest development of largescale 3 D printing systems and identifies their relationships and limiting factors. Thereafter, critical factors that are used to evaluate the workability and printable performance of cementitious materials are specified. Easy-extrusive, easy-flowing, well-buildable, and proper setting time are significant for cementitious material to meet the critical requirements of a freeform construction process. Finally, main advantages, potential applications and the prospects of future research of 3 D printing in construction technology are suggested. The objective of this work is to review current design methodologies and operational constraints of largescale 3 D printing system and provide references for optimizing the performance of cementitious material and promote its responsible use with largescale 3 D printing technology.展开更多
Three-dimensional(3 D)printing,also known as additive manufacturing,has the advantages of low cost,easy structure operation,rapid prototyping,and easy customization.In the past few years,materials with different struc...Three-dimensional(3 D)printing,also known as additive manufacturing,has the advantages of low cost,easy structure operation,rapid prototyping,and easy customization.In the past few years,materials with different structures,compositions,and properties have been widely studied as prospects in the field of 3 D printing.This paper reviews the synthesis methods and morphologies of one-,two-and threedimensional micro/nano materials and their composites,as well as their applications in electrochemistry,such as supercapacitors,batteries and electrocatalysis.The latest progress and breakthroughs in the synthesis and application of different structural materials in 3 D-printing materials,as well as the challenges and prospects of electrochemical applications,are discussed.展开更多
There is a perpetual pursuit for free-form glasses and ceramics featuring outstanding mechanical properties as well as chemical and thermal resistance.It is a promising idea to shape inorganic materials in three-dimen...There is a perpetual pursuit for free-form glasses and ceramics featuring outstanding mechanical properties as well as chemical and thermal resistance.It is a promising idea to shape inorganic materials in three-dimensional(3D)forms to reduce their weight while maintaining high mechanical properties.A popular strategy for the preparation of 3D inorganic materials is to mold the organic–inorganic hybrid photoresists into 3D micro-and nano-structures and remove the organic components by subsequent sintering.However,due to the discrete arrangement of inorganic components in the organic-inorganic hybrid photoresists,it remains a huge challenge to attain isotropic shrinkage during sintering.Herein,we demonstrate the isotropic sintering shrinkage by forming the consecutive–Si–O–Si–O–Zr–O–inorganic backbone in photoresists and fabricating 3D glass–ceramic nanolattices with enhanced mechanical properties.The femtosecond(fs)laser is used in two-photon polymerization(TPP)to fabricate 3D green body structures.After subsequent sintering at 1000℃,high-quality 3D glass–ceramic microstructures can be obtained with perfectly intact and smooth morphology.In-suit compression experiments and finite-element simulations reveal that octahedral-truss(oct-truss)lattices possess remarkable adeptness in bearing stress concentration and maintain the structural integrity to resist rod bending,indicating that this structure is a candidate for preparing lightweight and high stiffness glass–ceramic nanolattices.3D printing of such glasses and ceramics has significant implications in a number of industrial applications,including metamaterials,microelectromechanical systems,photonic crystals,and damage-tolerant lightweight materials.展开更多
Esophageal disease is a common disorder of the digestive system that can severely affect the quality of life andprognosis of patients. Esophageal stenting is an effective treatment that has been widely used in clinica...Esophageal disease is a common disorder of the digestive system that can severely affect the quality of life andprognosis of patients. Esophageal stenting is an effective treatment that has been widely used in clinical practice.However, esophageal stents of different types and parameters have varying adaptability and effectiveness forpatients, and they need to be individually selected according to the patient’s specific situation. The purposeof this study was to provide a reference for clinical doctors to choose suitable esophageal stents. We used 3Dprinting technology to fabricate esophageal stents with different ratios of thermoplastic polyurethane (TPU)/(Poly-ε-caprolactone) PCL polymer, and established an artificial neural network model that could predict the radial forceof esophageal stents based on the content of TPU, PCL and print parameter. We selected three optimal ratios formechanical performance tests and evaluated the biomechanical effects of different ratios of stents on esophagealimplantation, swallowing, and stent migration processes through finite element numerical simulation and in vitrosimulation tests. The results showed that different ratios of polymer stents had different mechanical properties,affecting the effectiveness of stent expansion treatment and the possibility of postoperative complications of stentimplantation.展开更多
基金supported by the National Key R&D Program of China(2023YFB4603504)the International Science&Technology Innovation Cooperation Project of Sichuan Province(2024YFHZ0232)+2 种基金the International Science&Technology Cooperation Project of Chengdu(2021-GH03-00009-HZ)the Program for Featured Directions of Engineering Multi-disciplines of Sichuan University(2020SCUNG203)the Program of Innovative Research Team for Young Scientists of Sichuan Province(22CXTD0019).
文摘The new-generation electronic components require a balance between electromagnetic interference shielding efficiency and open structure factors such as ventilation and heat dissipation.In addition,realizing the tunable shielding of porous shields over a wide range of wavelengths is even more challenging.In this study,the well-prepared thermoplastic polyurethane/carbon nanotubes composites were used to fabricate the novel periodic porous flexible metamaterials using fused deposition modeling 3D printing.Particularly,the investigation focuses on optimization of pore geometry,size,dislocation configuration and material thickness,thus establishing a clear correlation between structural parameters and shielding property.Both experimental and simulation results have validated the superior shielding performance of hexagon derived honeycomb structure over other designs,and proposed the failure shielding size(D_(f)≈λ/8-λ/5)and critical inclined angle(θf≈43°-48°),which could be used as new benchmarks for tunable electromagnetic shielding.In addition,the proper regulation of the material thickness could remarkably enhance the maximum shielding capability(85-95 dB)and absorption coefficient A(over 0.83).The final innovative design of the porous shielding box also exhibits good shielding effectiveness across a broad frequency range(over 2.4 GHz),opening up novel pathways for individualized and diversified shielding solutions.
基金financially supported by the National Natural Science Foundation of China(No.51933007,No.52373047,No.52302106)the Sichuan Youth Science and Technology Innovation Research Team Project(No.2022JDTD0012)+2 种基金the Program for Featured Directions of Engineering Multidisciplines of Sichuan University(No.2020SCUNG203)the Natural Science Foundation of Sichuan Province(No.2023NSFSC0418)the Program for State Key Laboratory of Polymer Materials Engineering(No.sklpme2022-3-10)。
文摘The tireless pursuit of supercapacitors with high energy density entails the parallel advancement of wellsuited electrode materials and elaborately engineered architectures.Polypyrrole(PPy)emerges as an exceedingly conductive polymer and a prospective pseudocapacitive materials for supercapacitors,yet the inferior cyclic stability and unpredictable polymerization patterns severely impede its real-world applicability.Here,for the first time,an innovative seed-induced in-situ polymerization assisted 3D printing strategy is proposed to fabricate PPy-reduced graphene oxide/poly(vinylidene difluoride-cohexafluoropropylene)(PVDF-HFP)(PPy-rGO/PH)electrodes with controllable polymerization behavior and exceptional areal mass loading.The preferred active sites uniformly pre-planted on the 3D-printed graphene substrates serve as reliable seeds to induce efficient polypyrrole deposition,achieving an impressive mass loading of 185.6 mg cm^(-2)(particularly 79.2 mg cm^(-2)for polypyrrole)and a superior areal capacitance of 25.2 F cm^(-2)at 2 mA cm^(-2)for a 12-layer electrode.In agreement with theses appealing features,an unprecedented areal energy density of 1.47 mW h cm^(-2)for a symmetrical device is registered,a rarely achieved value for other PPy/rGO-based supercapacitors.This work highlights a promising route to preparing high energy density energy storage modules for real-world applications.
基金the National Natural Science Foundation of China(52074166)Shandong Province(ZR2021YQ38)the Open Grant of State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mines(SKLMRDPC20KF02).
文摘The existence of joints or other kinds of discontinuities has a dramatic efect on the stability of rock excavations and engineering.As a result,a great challenge in rock mass mechanics testing is to prepare rock or rock-like samples with defects.In recent years,3D printing technology has become a promising tool in the feld of rock mass mechanics and engineering.This study frst reviews and discusses the research status of traditional test methods in rock mass mechanics tests of making rock samples with defects.Then,based on the comprehensive analysis of previous research,the application of 3D printing technology in rock mass mechanics is expounded from the following three aspects.The frst is the printing material.Although there are many materials for 3D printing,it has been found that 3D printing materials that can be used for rock mass mechanics research are very limited.After research,we summarize and evaluate printing material that can be used for rock mass mechanics studies.The second is the printing methodology,which mainly introduces the current application forms of 3D printing technology in rock mass mechanics.This includes printed precise casting molds and one-time printed samples.The last one is the printing model,which includes small-scale samples for mechanical tests and large-scale physical models.Then,the benefts and drawbacks of using 3D printing samples in mechanical tests and the validity of their simulation of real rock are discussed.Compared with traditional rock samples collected in nature or synthetic rock-like samples,the samples made by 3D printing technology have unique advantages,such as higher test repeatability,visualization of rock internal structure and stress distribution.There is thus great potential for the use of 3D printing in the feld of rock mass mechanics.However,3D printing materials also have shortcomings,such as insufcient material strength and accuracy at this stage.Finally,the application prospect of 3D printing technology in rock mass mechanics research is proposed.
文摘In recent years, additive manufacturing (AM), known as “3D printing”, has experienced exceptional growth thanks to the development of mechatronics and materials science. Fused filament deposition (FDM) manufacturing is the most widely used technique in the field of AM, due to low operating and material costs. However, the materials commonly used for this technology are virgin thermoplastics. It is worth noting a considerable amount of waste exists due to failed print and disposable prototypes. In this regard, using green and sustainable materials is essential to limit the impact on the environment. The recycled, bio-based, and blended recycled materials are therefore a potential approach for 3D printing. In contrast, the lack of understanding of the mechanism of interlayer adhesion and the degradation of materials for FDM printing has posed a major challenge for these green materials. This paper provides an overview of the FDM technique and material requirements for 3D printing filaments. The main objective is to highlight the advantages and disadvantages of using recycled, bio-based, and blended materials based on thermoplastics for 3D printing filaments. In this work, solutions to improve the mechanical properties of 3D printing parts before, during, and after the printing process are pointed out. This paper provides an overview on choosing which materials and solutions depend on the specific application purposes. Moreover, research gaps and opportunities are mentioned in the discussion and conclusions sections of this study.
基金The authors acknowledge Arizona State University for the start-up funding support.
文摘Over millions of years of evolution,nature has created organisms with overwhelming performances due to their unique materials and structures,providing us with valuable inspirations for the development of next-generation biomedical devices.As a promising new technology,3D printing enables the fabrication of multiscale,multi-material,and multi-functional threedimensional(3D)biomimetic materials and structures with high precision and great flexibility.The manufacturing challenges of biomedical devices with advanced biomimetic materials and structures for various applications were overcome with the flourishing development of 3D printing technologies.In this paper,the state-of-the-art additive manufacturing of biomimetic materials and structures in the field of biomedical engineering were overviewed.Various kinds of biomedical applications,including implants,lab-on-chip,medicine,microvascular network,and artificial organs and tissues,were respectively discussed.The technical challenges and limitations of biomimetic additive manufacturing in biomedical applications were further investigated,and the potential solutions and intriguing future technological developments of biomimetic 3D printing of biomedical devices were highlighted.
基金supported by the National Natural Science Foundation of China(No.81171731)the Project of Chengdu Science and Technology Bureau(Nos.2021-YF05-01619-SN and 2021-RC05-00022-CG)+2 种基金the Science and Technology Project of Tibet Autonomous Region(Nos.XZ202202YD0013C and XZ201901-GB-08)the Sichuan Science and Technology Program(No.2022YFG0066)the 1·3·5 Project for Disciplines of Excellence,West China Hospital,Sichuan University(Nos.ZYJC21026,ZYGD21001 and ZYJC21077).
文摘At present,the clinical reconstruction of the auricle usually adopts the strategy of taking autologous costal cartilage.This method has great trauma to patients,poor plasticity and inaccurate shaping.Three-dimensional(3D)printing technology has made a great breakthrough in the clinical application of orthopedic implants.This study explored the combination of 3D printing and tissue engineering to precisely reconstruct the auricle.First,a polylactic acid(PLA)polymer scaffold with a precisely customized patient appearance was fabricated,and then auricle cartilage fragments were loaded into the 3D-printed porous PLA scaffold to promote auricle reconstruction.In vitro,gelatin methacrylamide(GelMA)hydrogels loaded with different sizes of rabbit ear cartilage fragments were studied to assess the regenerative activity of various autologous cartilage fragments.In vivo,rat ear cartilage fragments were placed in an accurately designed porous PLA polymer ear scaffold to promote auricle reconstruction.The results indicated that the chondrocytes in the cartilage fragments could maintain the morphological phenotype in vitro.After three months of implantation observation,it was conducive to promoting the subsequent regeneration of cartilage in vivo.The autologous cartilage fragments combined with 3D printing technology show promising potential in auricle reconstruction.
基金supported by the National Key Research and Development Program of China(Grant Nos.2018YFB1105100,2018YFC2001300)the National Natural Science Foundation of China(Grant Nos.5167050531,51822504,91848204)+4 种基金the Joint Foundation for Equipment Pre-research of Ministry of Education(Grant No.2018G944J00084)Key Scientific and Technological Project of Jilin Province(Grant No.20180201051GX)the Program for JLU Science and Technology Innovative Research Team(Grant No.2017TD-04)the National Postdoctoral Program for Innovative Talents(Grant No.BX20180126)the China Postdoctoral Science Foundation(Grant No.2018M641769)。
文摘4D printing is proposed based on the additive manufacturing of stimuli-responsive materials and structures,which can realize shape changing upon external stimuli.This article reviews the 4D printing methods and actuating performances of 4D printing structures based on shape memory polymers,hydrogels,liquid crystal elastomers,and electroactive polymers.This article shows that the shape morphing properties of single materials are limited,while 4D printing of composites can integrate the various driving modes of different smart materials.In the end,challenges facing 4D printing such as broadening the scope of smart materials,improving printing processes,the compatibility of printing different materials have been discussed.
文摘Tissue engineering is an emerging means for resolving the problems of tissue repair and organ replacement in regenerative medicine.Insufficient supply of nutrients and oxygen to cells in large-scale tissues has led to the demand to prepare blood vessels.Scaffold-based tissue engineering approaches are effective methods to form new blood vessel tissues.The demand for blood vessels prompts systematic research on fabrication strategies of vascular scaffolds for tissue engineering.Recent advances in 3D printing have facilitated fabrication of vascular scaffolds,contributing to broad prospects for tissue vascularization.This review presents state of the art on modeling methods,print materials and preparation processes for fabrication of vascular scaffolds,and discusses the advantages and application fields of each method.Specially,significance and importance of scaffold-based tissue engineering for vascular regeneration are emphasized.Print materials and preparation processes are discussed in detail.And a focus is placed on preparation processes based on 3D printing technologies and traditional manufacturing technologies including casting,electrospinning,and Lego-like construction.And related studies are exemplified.Transformation of vascular scaffolds to clinical application is discussed.Also,four trends of 3D printing of tissue engineering vascular scaffolds are presented,including machine learning,near-infrared photopolymerization,4D printing,and combination of self-assembly and 3D printing-based methods.
文摘Donor shortages for organ transplantations are a major clinical challenge worldwide. Potential risks that are inevitably encountered with traditional methods include complications, secondary injuries, and limited source donors. Three-dimensional (3D) printing technology holds the potential to solve these limitations; it can he used to rapidly manufacture personalized tissue engineering scaffolds, repair tissue defects in situ with cells, and even directly print tissue and organs. Such printed implants and organs not only perfectly match the patient's damaged tissue, hut can also have engineered material microstructures and cell arrangements to promote cell growth and differentiation. Thus, such implants allow the desired tissue repair to he achieved, and could eventually solve the donor-shortage problem. This review summarizes relevant studies and recent progress on four levels, introduces different types of biomedical materials, and discusses existing problems and development issues with 3D printing that are related to materials and to the construction of extracellular matrix in vitro for medical applications.
基金the National Natural Science Foundation of China(Nos.U1601220,82072450,and 81672118)Chongqing Science and Technology Commission-Basic Science and Frontier Technology Key Project(No.cstc2015jcyjBX0119)Chongqing Medical University Intelligent Medicine Research Project(No.ZHYX202115).
文摘Since 3D printed hard materials could match the shape of bone,cell survival and fate determination towards osteoblasts in such materials have become a popular research target.In this study,a scaffold of hardmaterial for 3D fabrication was designed to regulate developmental signal(Notch)transduction guiding osteoblast differentiation.We established a polycaprolactone(PCL)and cell-integrated 3D printing system(PCI3D)to reciprocally print the beams of PCL and cell-laden hydrogel for a module.This PCI3D module holds good cell viability of over 87%,whereas cells show about sixfold proliferation in a 7-day culture.The osteocytic MLO-Y4 was engineered to overexpress Notch ligand Dll4,making up 25%after mixing with 75%stromal cells in the PCI3D module.Osteocytic Dll4,unlike other delta-like family members such as Dll1 or Dll3,promotes osteoblast differentiation and themineralization of primary mouse and a cell line of bone marrow stromal cells when cultured in a PCI3D module for up to 28 days.Mechanistically,osteocytic Dll4 could not promote osteogenic differentiation of the primary bone marrow stromal cells(BMSCs)after conditional deletion of the Notch transcription factor RBPjκby Cre recombinase.These data indicate that osteocytic Dll4 activates RBPjκ-dependent canonical Notch signaling in BMSCs for their oriented differentiation towards osteoblasts.Additionally,osteocytic Dll4 holds a great potential for angiogenesis in human umbilical vein endothelial cells within modules.Our study reveals that osteocytic Dll4 could be the osteogenic niche determining cell fate towards osteoblasts.This will open a new avenue to overcome the current limitation of poor cell viability and low bioactivity of traditional orthopedic implants.
基金funded by Versus Arthritis UK(Grant No.21977)European Commission via a H2020-MSCA-RISE programme(BAMOS,Grant No.734156)+1 种基金Innovative UK via Newton Fund(Grant No.102872)Engineering and Physical Science Research Council(EPSRC)via DTP CASE programme(Grant No.EP/T517793/1).
文摘3D printing technology is an emerging technology.It constructs solid bodies by stacking materials layer by layer,and can quickly and accurately prepare bone tissue engineering scaffolds with specific shapes and structures to meet the needs of different patients.The field of life sciences has received a great deal of attention.However,different 3D printing technologies and materials have their advantages and disadvantages,and there are limitations in clinical application.In this paper,the technology,materials and clinical applications of 3D printed bone tissue engineering scaffolds are reviewed,and the future development trends and challenges in this field are prospected.
基金the financial support from the National Natural Science Foundation of China(22109021)Natural Science Foundation of Jiangsu Province(BK20200375)Jiangsu Shuangchuang Talent Program(JSSCBS20210100)。
文摘Four-dimensional printing allows for the transformation capabilities of 3D-printed architectures over time,altering their shape,properties,or function when exposed to external stimuli.This interdisciplinary technology endows the 3D architectures with unique functionalities,which has generated excitement in diverse research fields,such as soft robotics,biomimetics,biomedical devices,and sensors.Understanding the selection of the material,architectural designs,and employed stimuli is crucial to unlocking the potential of smart customization with 4D printing.This review summarizes recent significant developments in 4D printing and establishes links between smart materials,3D printing techniques,programmable structures,diversiform stimulus,and new functionalities for multidisciplinary applications.We start by introducing the advanced features of 4D printing and the key technological roadmap for its implementation.We then place considerable emphasis on printable smart materials and structural designs,as well as general approaches to designing programmable structures.We also review stimulus designs in smart materials and their associated stimulus-responsive mechanisms.Finally,we discuss new functionalities of 4D printing for potential applications and further development directions.
基金supported by:Base Funding-UIDB/04708/2020 of the CONSTRUCT-Instituto de I&D em Estruturas e Construc¸o˜es-funded by national funds through the FCT/MCTES(PIDDAC)national funds through FCT e Fundac¸a˜o para a Cieˆncia e a Tecnologia,I.P.,under the Scientific Employment Stimulus-Institutional Call e CEECINST/00049/2018.
文摘Recent years are showing a rapid adoption of digital manufacturing techniques to the construction industry,with a focus on additive manufacturing.Although 3D printing for construction(3DPC)has notably advanced in recent years,publications on the subject are recent and date a growth in 2019,indicating that it is a promising technology as it enables greater efficiency with fair consumption of material,minimization of waste generation,encouraging the construction industrialization and enhancing and accelerating the constructive process.This new building system not only gives an optimization of the building process but provides a new approach to the building design materiality.The direct connection between design and manufacturing allows the reduction in the number of the various construction phases needed.It is opening a new and wide range of options both formal and chromatic in customization,avoiding complex formworks,reducing costs and manufacturing time.The creative process has a strict and direct link with the constructive process,straightening design with its materiality.Cement-based materials lead the way,but new alternatives are being explored to further reduce its carbon footprint.In order to leverage its sustainability and enhance the system capacity,initiatives are being pursued to allow the reduction of the use of PC.Geopolimers are taking the first steps in 3DPC.Construction and Demolition Waste(CDW)materials are used to substitute natural aggregates.Even soil is being explored has a structural and aesthetic material.These research trends are opening a wider range of possibilities for architecture and design,broadening the spectrum of color,texture,and formal variations.The concern about textures and colours is not yet evident in many the structures already printed,opening the opportunity for future research.More can be done in the mixture and formal design of this building system,“discovering”other raw materials in others waste.This article aims to make a critical review of technologies,materials and methodologies to support the development of new sustainable materials to be used as a plastic element in the printed structure.A roadmap of 3D printing for construction is presented,and an approach on mix design,properties in the fresh and hardened state,highlighting the possibilities for obtaining alternative materials are pointed.With this review possible directions are presented to find solutions to enhance the sustainability of this system discovering“new”materiality for architecture and design.
文摘In recent few years, significant improvement has been made in developing largescale 3D printers to accommodate the need of industrial-scale 3D printing. It is of great feasibility to construct structural components and buildings by means of 3D concrete printing. The major issues of this innovative technique focus on the preparation and optimization of concrete materials which possess favourable printable properties as well as the measurement and evaluation methods of their workability. This paper firstly introduces three largescale 3D printing systems that have been successfully applied in construction industry. It then summarizes the commonly used raw materials in concrete manufacturing. Critical factors that should be particularly controlled in material preparation are specified. Easy-extrusive, easy-flowing, well-buildable, proper setting time and low shrinkage are significant for concrete mixture to meet the critical requirements of a freeform construction process. Thereafter, measuring methods that can be employed to assess the fresh and hardened properties of concrete at early stages are suggested. Finally, a few of evaluation methods are presented which may offer certain assistance for optimizing material preparation. The objective of this work is to review current design methodologies and experimental measurement and evaluation methods for 3D printable concrete materials and promote its responsible use with largescale 3D printing technology.
基金supported by the National Natural Science Foundation of China (51575267 and 51322509)the National Key Research and Development Program ‘‘Additive Manufacturing and Laser Manufacturing’’ (2016YFB1100101)+5 种基金the Top-Notch Young Talents Program of China, the NSFC-DFG Sino-German Research Project (GZ 1217)the Key Research and Development Program of Jiangsu Provincial Department of Science and Technology of China (BE2016181)the 333 High-level Talents Training Project (BRA2015368), the Aeronautical Science Foundation of China (2015ZE52051)the Outstanding Youth Foundation of Jiangsu Province of China (BK20130035)the Program for New Century Excellent Talents in University (NCET-13-0854)the Fundamental Research Funds for the Central Universities (NE2013103, NP2015206 and NZ2016108)
文摘Additive manufacturing(AM),interchangeably termed as3D printing(3DP),has been defined as one of the key technologies in the national development strategies of a number of countries around the world.America Makes,as the National Additive Manufacturing Innovation Institute,is the nation’s leading and collaborative partner in AM/3DP technology research,discovery,creation,and innovation,working efficiently to innovate and accelerate AM/3DP to increase America’s global manufacturing competitiveness(https://americamakes.us).German
基金research conducted with the financial support of Science Foundation Ireland under the SFI Research Infrastructure Programme (21/RI/9831)the funding provided by the Irish Research Council through the Irish Research Council Enterprise Partnership Scheme with Johnson and Johnson (EPSPG/2020/78)
文摘Tissue engineering(TE)continues to be widely explored as a potential solution to meet critical clinical needs for diseased tissue replacement and tissue regeneration.In this study,we developed a poly(2-hydroxyethyl methacrylate-co-methacrylic acid)(pHEMA-co-MAA)based hydrogel loaded with newly synthesized conductive poly(3,4-ethylene-dioxythiophene)(PEDOT)and polypyrrole(PPy)nanoparticles(NPs),and subsequently processed these hydrogels into tissue engineered constructs via three-dimensional(3D)printing.The presence of the NPs was critical as they altered the rheological properties during printing.However,all samples exhibited suitable shear thinning properties,allowing for the development of an optimized processing window for 3D printing.Samples were 3D printed into pre-determined disk-shaped configurations of 2 and 10 mm in height and diameter,respectively.We observed that the NPs disrupted the gel crosslinking efficiencies,leading to shorter degradation times and compressive mechanical properties ranging between 450 and 550 kPa.The conductivity of the printed hydrogels increased along with the NP concentration to(5.10±0.37)×10^(−7)S/cm.In vitro studies with cortical astrocyte cell cultures demonstrated that exposure to the pHEMA-co-MAA NP hydrogels yielded high cellular viability and proliferation rates.Finally,hydrogel antimicrobial studies with staphylococcus epidermidis bacteria revealed that the developed hydrogels affected bacterial growth.Taken together,these materials show promise for various TE strategies.
基金supported by the National Major Research Instrument Development Project of the National Natural Science Foundation of China(51627812)the opening project of State Key Laboratory of Explosion Science and Technology(Beijing Institute of Technology,KFJJ13-11M)
文摘In recent few years, significant improvement has been made in developing largescale 3 D printer to accommodate the need of industrial-scale 3 D printing. Cementitious materials that are compatible with 3 D printing promote rapid application of this innovative technique in the construction field with advantages of cost effective, high efficiency, design flexibility and environmental friendly. This paper firstly reviews existing 3 D printing techniques that are currently being used in commercial3 D printers. It then summarizes three latest development of largescale 3 D printing systems and identifies their relationships and limiting factors. Thereafter, critical factors that are used to evaluate the workability and printable performance of cementitious materials are specified. Easy-extrusive, easy-flowing, well-buildable, and proper setting time are significant for cementitious material to meet the critical requirements of a freeform construction process. Finally, main advantages, potential applications and the prospects of future research of 3 D printing in construction technology are suggested. The objective of this work is to review current design methodologies and operational constraints of largescale 3 D printing system and provide references for optimizing the performance of cementitious material and promote its responsible use with largescale 3 D printing technology.
基金supported by the National Natural Science Foundation of China(No.U1904215)Natural Science Foundation of Jiangsu Province(No.BK20200044)Changjiang Scholars Program of the Ministry of Education(No.Q2018270)。
文摘Three-dimensional(3 D)printing,also known as additive manufacturing,has the advantages of low cost,easy structure operation,rapid prototyping,and easy customization.In the past few years,materials with different structures,compositions,and properties have been widely studied as prospects in the field of 3 D printing.This paper reviews the synthesis methods and morphologies of one-,two-and threedimensional micro/nano materials and their composites,as well as their applications in electrochemistry,such as supercapacitors,batteries and electrocatalysis.The latest progress and breakthroughs in the synthesis and application of different structural materials in 3 D-printing materials,as well as the challenges and prospects of electrochemical applications,are discussed.
基金supported by the National Key Research and Development Program of China(2020YFA0715000)the Hainan Provincial Joint Project of Sanya Yazhou Bay Science and Technology City(2021JJLH0058)the Guangdong Basic and Applied Basic Research Foundation(2021B1515120041)。
文摘There is a perpetual pursuit for free-form glasses and ceramics featuring outstanding mechanical properties as well as chemical and thermal resistance.It is a promising idea to shape inorganic materials in three-dimensional(3D)forms to reduce their weight while maintaining high mechanical properties.A popular strategy for the preparation of 3D inorganic materials is to mold the organic–inorganic hybrid photoresists into 3D micro-and nano-structures and remove the organic components by subsequent sintering.However,due to the discrete arrangement of inorganic components in the organic-inorganic hybrid photoresists,it remains a huge challenge to attain isotropic shrinkage during sintering.Herein,we demonstrate the isotropic sintering shrinkage by forming the consecutive–Si–O–Si–O–Zr–O–inorganic backbone in photoresists and fabricating 3D glass–ceramic nanolattices with enhanced mechanical properties.The femtosecond(fs)laser is used in two-photon polymerization(TPP)to fabricate 3D green body structures.After subsequent sintering at 1000℃,high-quality 3D glass–ceramic microstructures can be obtained with perfectly intact and smooth morphology.In-suit compression experiments and finite-element simulations reveal that octahedral-truss(oct-truss)lattices possess remarkable adeptness in bearing stress concentration and maintain the structural integrity to resist rod bending,indicating that this structure is a candidate for preparing lightweight and high stiffness glass–ceramic nanolattices.3D printing of such glasses and ceramics has significant implications in a number of industrial applications,including metamaterials,microelectromechanical systems,photonic crystals,and damage-tolerant lightweight materials.
基金Nanning Technology and Innovation Special Program(20204122)and Research Grant for 100 Talents of Guangxi Plan.
文摘Esophageal disease is a common disorder of the digestive system that can severely affect the quality of life andprognosis of patients. Esophageal stenting is an effective treatment that has been widely used in clinical practice.However, esophageal stents of different types and parameters have varying adaptability and effectiveness forpatients, and they need to be individually selected according to the patient’s specific situation. The purposeof this study was to provide a reference for clinical doctors to choose suitable esophageal stents. We used 3Dprinting technology to fabricate esophageal stents with different ratios of thermoplastic polyurethane (TPU)/(Poly-ε-caprolactone) PCL polymer, and established an artificial neural network model that could predict the radial forceof esophageal stents based on the content of TPU, PCL and print parameter. We selected three optimal ratios formechanical performance tests and evaluated the biomechanical effects of different ratios of stents on esophagealimplantation, swallowing, and stent migration processes through finite element numerical simulation and in vitrosimulation tests. The results showed that different ratios of polymer stents had different mechanical properties,affecting the effectiveness of stent expansion treatment and the possibility of postoperative complications of stentimplantation.