3D printing techniques offer an effective method in fabricating complex radially multi-material structures.However,it is challenging for complex and delicate radially multi-material model geometries without supporting...3D printing techniques offer an effective method in fabricating complex radially multi-material structures.However,it is challenging for complex and delicate radially multi-material model geometries without supporting structures,such as tissue vessels and tubular graft,among others.In this work,we tackle these challenges by developing a polar digital light processing technique which uses a rod as the printing platform.The 3D model fabrication is accomplished through line projection.The rotation and translation of the rod are synchronized to project and illuminate the photosensitive material volume.By controlling the distance between the rod and the printing window,we achieved the printing of tubular structures with a minimum wall thickness as thin as 50 micrometers.By controlling the width of fine slits at the printing window,we achieved the printing of structures with a minimum feature size of 10 micrometers.Our process accomplished the fabrication of thin-walled tubular graft structure with a thickness of only 100 micrometers and lengths of several centimeters within a timeframe of just 100 s.Additionally,it enables the printing of axial multi-material structures,thereby achieving adjustable mechanical strength.This method is conducive to rapid customization of tubular grafts and the manufacturing of tubular components in fields such as dentistry,aerospace,and more.展开更多
A new algorithm based on the projection method with the implicit finite difference technique was established to calculate the velocity fields and pressure.The calculation region can be divided into different regions a...A new algorithm based on the projection method with the implicit finite difference technique was established to calculate the velocity fields and pressure.The calculation region can be divided into different regions according to Reynolds number.In the far-wall region,the thermal melt flow was calculated as Newtonian flow.In the near-wall region,the thermal melt flow was calculated as non-Newtonian flow.It was proved that the new algorithm based on the projection method with the implicit technique was correct through nonparametric statistics method and experiment.The simulation results show that the new algorithm based on the projection method with the implicit technique calculates more quickly than the solution algorithm-volume of fluid method using the explicit difference method.展开更多
This paper discusses current research and development of fringe projection-based techniques. A system based on Fourier transform profilometry (FTP) is proposed for three-dimensional (3D) shape recovery. The system imp...This paper discusses current research and development of fringe projection-based techniques. A system based on Fourier transform profilometry (FTP) is proposed for three-dimensional (3D) shape recovery. The system improves the method of phase unwrapping to gain accurate 3D shapes of objects. The method uses a region-growing algorithm for the path prediction guided by the quality map to increase the recovering accuracy and provides a fast and simple tool for 3D shape recovery. The shape measurement and data recovery are integrated to offer a new method of 3D modelling. Examples are presented to verify the feasibility of the proposed method.展开更多
Projection micro stereolithography(PμSL)is a high-resolution(up to 0.6μm)3D printing technology based on area projection triggered photopolymerization,and capable of fabricating complex 3D architectures covering mul...Projection micro stereolithography(PμSL)is a high-resolution(up to 0.6μm)3D printing technology based on area projection triggered photopolymerization,and capable of fabricating complex 3D architectures covering multiple scales and with multiple materials.This paper reviews the recent development of the PμSL based 3D printing technologies,together with the related applications.It introduces the working principle,the commercialized products,and the recent multiscale,multimaterial printing capability of PμSL as well as some functional photopolymers that are suitable to PμSL.This review paper also summarizes a few typical applications of PμSL including mechanical metamaterials,optical components,4D printing,bioinspired materials and biomedical applications,and offers perspectives on the directions of the further development of PμSL based 3D printing technology.展开更多
The volumetric rendering of 3 D medical image data is very effective method for communication about radiological studies to clinicians. Algorithms that produce images with artifacts and inaccuracies are not clinically...The volumetric rendering of 3 D medical image data is very effective method for communication about radiological studies to clinicians. Algorithms that produce images with artifacts and inaccuracies are not clinically useful. This paper proposed a direct voxel projection algorithm to implement volumetric data rendering. Using this algorithm, arbitrary volume rotation, transparent and cutaway views are generated satisfactorily. Compared with the existing raytracing methods, it improves the projection image quality greatly. Some experimental results about real medical CT image data demonstrate the advantages and fidelity of the proposed algorithm.展开更多
In civil aviation security screening, laptops, with their intricate structural composition, provide the potential for criminals to conceal dangerous items. Presently, the security process necessitates passengers to in...In civil aviation security screening, laptops, with their intricate structural composition, provide the potential for criminals to conceal dangerous items. Presently, the security process necessitates passengers to individually present their laptops for inspection. The paper introduced a method for laptop removal. By combining projection algorithms with the YOLOv7-Seg model, a laptop’s three views were generated through projection, and instance segmentation of these views was achieved using YOLOv7-Seg. The resulting 2D masks from instance segmentation at different angles were employed to reconstruct a 3D mask through angle restoration. Ultimately, the intersection of this 3D mask with the original 3D data enabled the successful extraction of the laptop’s 3D information. Experimental results demonstrated that the fusion of projection and instance segmentation facilitated the automatic removal of laptops from CT data. Moreover, higher instance segmentation model accuracy leads to more precise removal outcomes. By implementing the laptop removal functionality, the civil aviation security screening process becomes more efficient and convenient. Passengers will no longer be required to individually handle their laptops, effectively enhancing the efficiency and accuracy of security screening.展开更多
Projection micro stereolithography(PμSL)has emerged as a powerful three-dimensional(3D)printing technique for manufacturing polymer structures with micron-scale high resolution at high printing speed,which enables th...Projection micro stereolithography(PμSL)has emerged as a powerful three-dimensional(3D)printing technique for manufacturing polymer structures with micron-scale high resolution at high printing speed,which enables the production of customized 3D microlattices with feature sizes down to several microns.However,the mechanical properties of as-printed polymers were not systemically studied at the relevant length scales,especially when the feature sizes step into micron/sub-micron level,limiting its reliable performance prediction in micro/nanolattice and other metamaterial applications.In this work,we demonstrate that PμSL-printed microfibers could become stronger and significantly more ductile with reduced size ranging from 20μm to 60μm,showing an obvious size-dependent mechanical behavior,in which the size decreases to 20μm with a fracture strain up to~100%and fracture strength up to~100 MPa.Such size effect enables the tailoring of the material strength and stiffness of PμSL-printed microlattices over a broad range,allowing to fabricate the microlattice metamaterials with desired/tunable mechanical properties for various structural and functional applications.展开更多
In order to improve the accuracy and efficiency of 3D model retrieval,the method based on affinity propagation clustering algorithm is proposed. Firstly,projection ray-based method is proposed to improve the feature e...In order to improve the accuracy and efficiency of 3D model retrieval,the method based on affinity propagation clustering algorithm is proposed. Firstly,projection ray-based method is proposed to improve the feature extraction efficiency of 3D models. Based on the relationship between model and its projection,the intersection in 3D space is transformed into intersection in 2D space,which reduces the number of intersection and improves the efficiency of the extraction algorithm. In feature extraction,multi-layer spheres method is analyzed. The two-layer spheres method makes the feature vector more accurate and improves retrieval precision. Secondly,Semi-supervised Affinity Propagation ( S-AP) clustering is utilized because it can be applied to different cluster structures. The S-AP algorithm is adopted to find the center models and then the center model collection is built. During retrieval process,the collection is utilized to classify the query model into corresponding model base and then the most similar model is retrieved in the model base. Finally,75 sample models from Princeton library are selected to do the experiment and then 36 models are used for retrieval test. The results validate that the proposed method outperforms the original method and the retrieval precision and recall ratios are improved effectively.展开更多
Acquisition of physical data with high precision is a key step in reverse engineering (RE). It is an important stimulative for the progress of reverse engineering with which various digitizing devices are invent ed,...Acquisition of physical data with high precision is a key step in reverse engineering (RE). It is an important stimulative for the progress of reverse engineering with which various digitizing devices are invent ed, developed and made applicable. This paper introduces a three dimensional opt ical measurement method based on digital fringe projection technique in RE to im prove the technique through its application. A practical example is presented an d the result demonstrates the applicability and feasibility of the measurement s ystem as well as the reliability and validity of relevant methods and algorithms .展开更多
A fast 3D reconstruction method based on structured light to measure various parameters of the raceway groove is presented. Digital parallel grating stripes distributed with sine density are projected onto the raceway...A fast 3D reconstruction method based on structured light to measure various parameters of the raceway groove is presented. Digital parallel grating stripes distributed with sine density are projected onto the raceway groove by a DLP projector, and distorting of stripes is happened on the raceway. Simultaneously, aided by three-step phase-shifting approach, three images covered by different stripes are obtained by a high-resolution CCD camera at the same location, thus a more accuracy local topography can be obtained. And then the bearing is rotated on a high precision computer controlled rotational stage. Three images are also obtained as the former step at next planned location triggered by the motor. After one cycle, all images information is combined through the mosaics. As a result, the 3D information of raceway groove can be gained. Not only geometric properties but also surface flaws can be extracted by software. A preliminary hardware system has been built, with which some geometric parameters have been extracted from reconstructed local topography.展开更多
It is difficult to analyze the inter-relationship for the construction layout of a reservoir project scientifically and intuitively.According to the characteristics of broad field and huge information,the modeling met...It is difficult to analyze the inter-relationship for the construction layout of a reservoir project scientifically and intuitively.According to the characteristics of broad field and huge information,the modeling methods of digital terrain and solid model as well as the techniques of texture mapping and scene navigation are adopted.The simulation system is developed by C program language,which includes the functions of the interactive navigation of 3D scene,the visual inquiry of project digital model information,the storage and management of project information.A certain reservoir is taken as a case.The 3D visual analysis for the construction layout and engineering information are obtained.The proposed system is of great advantages in dealing with large amount of information and the method provides a theoretical basis and technical support for the construction layout of a reservoir project.展开更多
Although automobile is an indispensable vehicle to modern life, it also serves as a social problem with a big traffic accident. Among the reasons of traffic accidents, careless driving accounts for the largest part. S...Although automobile is an indispensable vehicle to modern life, it also serves as a social problem with a big traffic accident. Among the reasons of traffic accidents, careless driving accounts for the largest part. So in order to avoid the careless driving, a system which can measure the posture of a driver and warns driver to drive carefully in the case of looking aside is necessary. Although the image measurement method is used broadly, there is a problem on which measurement accuracy is influenced by environment light, makeup of the driver, etc. in the general method based on the two-dimensional image. Therefore, in this study, we propose an image measurement method to obtain the head posture of driver. First we use three-dimensional measurement method which based on the infrared pattern projection to get 3-D information of head, and then we calculate the angle for faces. In this paper, we explain the composition method of an experiment system, and the results of head posture measurement experiment.展开更多
An optical technology for 3-D surface measurement is set up.The technology,based on a deformed projected grating pattern which carries the 3-D information of the measured object,can automatically and accurately obtain...An optical technology for 3-D surface measurement is set up.The technology,based on a deformed projected grating pattern which carries the 3-D information of the measured object,can automatically and accurately obtain the phase map of a measured object by using a linear-phase FIR filter.In contrast to the 2-D fast Fourier transform technique,it’s more than fast.Only one image pattern is sufficient for measuring.The phase map can be processed without assigning fringe orders and making distinction between a depression and an elevation.Theoretical analysis and experimental result are presented.展开更多
To obtain an accurate 3 D object configuration from images,the essential perspective characteristics must be considered. Several new inverse transformation relations of the perspective image lines are given. Utiliz...To obtain an accurate 3 D object configuration from images,the essential perspective characteristics must be considered. Several new inverse transformation relations of the perspective image lines are given. Utilizing the analytic transformation relations, an optimization procedure for obtaining the unknown camera parameters of images is presented in this paper. A 3 D reproduction method and examples are introduced.展开更多
基金supported financially by the Fundamental Research Funds for the Central Universities (YWF-22-K-101,YWF-23-L-805 and YWF-23-YG-QB-006)the support from the National Natural Science Foundation of China (12372106)Fundamental Research Funds for the Central Universities
文摘3D printing techniques offer an effective method in fabricating complex radially multi-material structures.However,it is challenging for complex and delicate radially multi-material model geometries without supporting structures,such as tissue vessels and tubular graft,among others.In this work,we tackle these challenges by developing a polar digital light processing technique which uses a rod as the printing platform.The 3D model fabrication is accomplished through line projection.The rotation and translation of the rod are synchronized to project and illuminate the photosensitive material volume.By controlling the distance between the rod and the printing window,we achieved the printing of tubular structures with a minimum wall thickness as thin as 50 micrometers.By controlling the width of fine slits at the printing window,we achieved the printing of structures with a minimum feature size of 10 micrometers.Our process accomplished the fabrication of thin-walled tubular graft structure with a thickness of only 100 micrometers and lengths of several centimeters within a timeframe of just 100 s.Additionally,it enables the printing of axial multi-material structures,thereby achieving adjustable mechanical strength.This method is conducive to rapid customization of tubular grafts and the manufacturing of tubular components in fields such as dentistry,aerospace,and more.
基金Project (50975263) supported by the National Natural Science Foundation of ChinaProject (2010081015) supported by International Cooperation Project of Shanxi Province, China+1 种基金 Project (2010-78) supported by the Scholarship Council in Shanxi province, ChinaProject (2010420120005) supported by Doctoral Fund of Ministry of Education of China
文摘A new algorithm based on the projection method with the implicit finite difference technique was established to calculate the velocity fields and pressure.The calculation region can be divided into different regions according to Reynolds number.In the far-wall region,the thermal melt flow was calculated as Newtonian flow.In the near-wall region,the thermal melt flow was calculated as non-Newtonian flow.It was proved that the new algorithm based on the projection method with the implicit technique was correct through nonparametric statistics method and experiment.The simulation results show that the new algorithm based on the projection method with the implicit technique calculates more quickly than the solution algorithm-volume of fluid method using the explicit difference method.
基金Project (No. 59965003) supported by the National Natural ScienceFoundation of China
文摘This paper discusses current research and development of fringe projection-based techniques. A system based on Fourier transform profilometry (FTP) is proposed for three-dimensional (3D) shape recovery. The system improves the method of phase unwrapping to gain accurate 3D shapes of objects. The method uses a region-growing algorithm for the path prediction guided by the quality map to increase the recovering accuracy and provides a fast and simple tool for 3D shape recovery. The shape measurement and data recovery are integrated to offer a new method of 3D modelling. Examples are presented to verify the feasibility of the proposed method.
基金the National Natural Science Foundation of China(51420105009).
文摘Projection micro stereolithography(PμSL)is a high-resolution(up to 0.6μm)3D printing technology based on area projection triggered photopolymerization,and capable of fabricating complex 3D architectures covering multiple scales and with multiple materials.This paper reviews the recent development of the PμSL based 3D printing technologies,together with the related applications.It introduces the working principle,the commercialized products,and the recent multiscale,multimaterial printing capability of PμSL as well as some functional photopolymers that are suitable to PμSL.This review paper also summarizes a few typical applications of PμSL including mechanical metamaterials,optical components,4D printing,bioinspired materials and biomedical applications,and offers perspectives on the directions of the further development of PμSL based 3D printing technology.
基金Shanghai Science and Technology Devel-opment Fund(9944 190 2 7)
文摘The volumetric rendering of 3 D medical image data is very effective method for communication about radiological studies to clinicians. Algorithms that produce images with artifacts and inaccuracies are not clinically useful. This paper proposed a direct voxel projection algorithm to implement volumetric data rendering. Using this algorithm, arbitrary volume rotation, transparent and cutaway views are generated satisfactorily. Compared with the existing raytracing methods, it improves the projection image quality greatly. Some experimental results about real medical CT image data demonstrate the advantages and fidelity of the proposed algorithm.
文摘In civil aviation security screening, laptops, with their intricate structural composition, provide the potential for criminals to conceal dangerous items. Presently, the security process necessitates passengers to individually present their laptops for inspection. The paper introduced a method for laptop removal. By combining projection algorithms with the YOLOv7-Seg model, a laptop’s three views were generated through projection, and instance segmentation of these views was achieved using YOLOv7-Seg. The resulting 2D masks from instance segmentation at different angles were employed to reconstruct a 3D mask through angle restoration. Ultimately, the intersection of this 3D mask with the original 3D data enabled the successful extraction of the laptop’s 3D information. Experimental results demonstrated that the fusion of projection and instance segmentation facilitated the automatic removal of laptops from CT data. Moreover, higher instance segmentation model accuracy leads to more precise removal outcomes. By implementing the laptop removal functionality, the civil aviation security screening process becomes more efficient and convenient. Passengers will no longer be required to individually handle their laptops, effectively enhancing the efficiency and accuracy of security screening.
基金the financial support from Shenzhen Science and Technology Innovation Committee under the Grant Nos. JCYJ20170818103206501, Type C 202011033000145Changsha Municipal Science and Technology Bureau Project kh2201035supported by the City University of Hong Kong under the Grant No. 9667226
文摘Projection micro stereolithography(PμSL)has emerged as a powerful three-dimensional(3D)printing technique for manufacturing polymer structures with micron-scale high resolution at high printing speed,which enables the production of customized 3D microlattices with feature sizes down to several microns.However,the mechanical properties of as-printed polymers were not systemically studied at the relevant length scales,especially when the feature sizes step into micron/sub-micron level,limiting its reliable performance prediction in micro/nanolattice and other metamaterial applications.In this work,we demonstrate that PμSL-printed microfibers could become stronger and significantly more ductile with reduced size ranging from 20μm to 60μm,showing an obvious size-dependent mechanical behavior,in which the size decreases to 20μm with a fracture strain up to~100%and fracture strength up to~100 MPa.Such size effect enables the tailoring of the material strength and stiffness of PμSL-printed microlattices over a broad range,allowing to fabricate the microlattice metamaterials with desired/tunable mechanical properties for various structural and functional applications.
基金Sponsored by the National Natural Science Foundation of China (Grant No. 51075083)
文摘In order to improve the accuracy and efficiency of 3D model retrieval,the method based on affinity propagation clustering algorithm is proposed. Firstly,projection ray-based method is proposed to improve the feature extraction efficiency of 3D models. Based on the relationship between model and its projection,the intersection in 3D space is transformed into intersection in 2D space,which reduces the number of intersection and improves the efficiency of the extraction algorithm. In feature extraction,multi-layer spheres method is analyzed. The two-layer spheres method makes the feature vector more accurate and improves retrieval precision. Secondly,Semi-supervised Affinity Propagation ( S-AP) clustering is utilized because it can be applied to different cluster structures. The S-AP algorithm is adopted to find the center models and then the center model collection is built. During retrieval process,the collection is utilized to classify the query model into corresponding model base and then the most similar model is retrieved in the model base. Finally,75 sample models from Princeton library are selected to do the experiment and then 36 models are used for retrieval test. The results validate that the proposed method outperforms the original method and the retrieval precision and recall ratios are improved effectively.
基金Project supported by the Science Foundation of Shanghai Munici pal Commission of Science and Technology ( Grant No.011461059)
文摘Acquisition of physical data with high precision is a key step in reverse engineering (RE). It is an important stimulative for the progress of reverse engineering with which various digitizing devices are invent ed, developed and made applicable. This paper introduces a three dimensional opt ical measurement method based on digital fringe projection technique in RE to im prove the technique through its application. A practical example is presented an d the result demonstrates the applicability and feasibility of the measurement s ystem as well as the reliability and validity of relevant methods and algorithms .
基金This project is supported by National Natural Science Foundation ofChina (No.50375047).
文摘A fast 3D reconstruction method based on structured light to measure various parameters of the raceway groove is presented. Digital parallel grating stripes distributed with sine density are projected onto the raceway groove by a DLP projector, and distorting of stripes is happened on the raceway. Simultaneously, aided by three-step phase-shifting approach, three images covered by different stripes are obtained by a high-resolution CCD camera at the same location, thus a more accuracy local topography can be obtained. And then the bearing is rotated on a high precision computer controlled rotational stage. Three images are also obtained as the former step at next planned location triggered by the motor. After one cycle, all images information is combined through the mosaics. As a result, the 3D information of raceway groove can be gained. Not only geometric properties but also surface flaws can be extracted by software. A preliminary hardware system has been built, with which some geometric parameters have been extracted from reconstructed local topography.
基金Supported by the Science Fund for Creative Research Groups of National Natural Science Foundation of China(No.51021004)Tianjin Research Program of Application Foundation and Advanced Technology(No.12JCZDJC29200)National Key Technology R and D Program in the 12th Five-Year Plan of China(No.2011BAB10B06)
文摘It is difficult to analyze the inter-relationship for the construction layout of a reservoir project scientifically and intuitively.According to the characteristics of broad field and huge information,the modeling methods of digital terrain and solid model as well as the techniques of texture mapping and scene navigation are adopted.The simulation system is developed by C program language,which includes the functions of the interactive navigation of 3D scene,the visual inquiry of project digital model information,the storage and management of project information.A certain reservoir is taken as a case.The 3D visual analysis for the construction layout and engineering information are obtained.The proposed system is of great advantages in dealing with large amount of information and the method provides a theoretical basis and technical support for the construction layout of a reservoir project.
文摘Although automobile is an indispensable vehicle to modern life, it also serves as a social problem with a big traffic accident. Among the reasons of traffic accidents, careless driving accounts for the largest part. So in order to avoid the careless driving, a system which can measure the posture of a driver and warns driver to drive carefully in the case of looking aside is necessary. Although the image measurement method is used broadly, there is a problem on which measurement accuracy is influenced by environment light, makeup of the driver, etc. in the general method based on the two-dimensional image. Therefore, in this study, we propose an image measurement method to obtain the head posture of driver. First we use three-dimensional measurement method which based on the infrared pattern projection to get 3-D information of head, and then we calculate the angle for faces. In this paper, we explain the composition method of an experiment system, and the results of head posture measurement experiment.
文摘An optical technology for 3-D surface measurement is set up.The technology,based on a deformed projected grating pattern which carries the 3-D information of the measured object,can automatically and accurately obtain the phase map of a measured object by using a linear-phase FIR filter.In contrast to the 2-D fast Fourier transform technique,it’s more than fast.Only one image pattern is sufficient for measuring.The phase map can be processed without assigning fringe orders and making distinction between a depression and an elevation.Theoretical analysis and experimental result are presented.
文摘To obtain an accurate 3 D object configuration from images,the essential perspective characteristics must be considered. Several new inverse transformation relations of the perspective image lines are given. Utilizing the analytic transformation relations, an optimization procedure for obtaining the unknown camera parameters of images is presented in this paper. A 3 D reproduction method and examples are introduced.