Background In recent years, with the rapid development of mobile Internet and Web3D technologies, a large number of web-based online 3D visualization applications have emerged. Web3D applications, including Web3D onli...Background In recent years, with the rapid development of mobile Internet and Web3D technologies, a large number of web-based online 3D visualization applications have emerged. Web3D applications, including Web3D online tourism, Web3D online architecture, Web3D online education environment, Web3D online medical care, and Web3D online shopping are examples of these applications that leverage 3D rendering on the web. These applications have pushed the boundaries of traditional web applications that use text, sound, image, video, and 2D animation as their main communication media, and resorted to 3D virtual scenes as the main interaction object, enabling a user experience that delivers a strong sense of immersion. This paper approached the emerging Web3D applications that generate stronger impacts on people's lives through “real-time rendering technology”, which is the core technology of Web3D. This paper discusses all the major 3D graphics APIs of Web3D and the well-known Web3D engines at home and abroad and classify the real-time rendering frameworks of Web3D applications into different categories. Results Finally, this study analyzed the specific demand posed by different fields to Web3D applications by referring to the representative Web3D applications in each particular field. Conclusions Our survey results show that Web3D applications based on real-time rendering have in-depth sectors of society and even family, which is a trend that has influence on every line of industry.展开更多
To improve the sense of reality on perception, an improved algorithm of 3D shape haptic rendering is put forward based on a finger mounted vibrotactile device. The principle is that the interactive information and the...To improve the sense of reality on perception, an improved algorithm of 3D shape haptic rendering is put forward based on a finger mounted vibrotactile device. The principle is that the interactive information and the shape information are conveyed to users when they touch virtual objects at mobile terminals by attaching the vibrotactile feedback on a fingertip. The extraction of shape characteristics, the interactive information and the mapping of shape in formation of vibration stimulation are key parts of the proposed algorithm to realize the real tactile rendering. The contact status of the interaction process, the height information and local gradient of the touch point are regarded as shape information and used to control the vibration intension, rhythm and distribution of the vibrators. With different contact status and shape information, the vibration pattern can be adjusted in time to imitate the outlines of virtual objects. Finally, the effectiveness of the algorithm is verified by shape perception experiments. The results show that the improved algorithm is effective for 3D shape haptic rendering.展开更多
This paper studies some programming techniques for low power rendering for 3 D graphics. These techniques are derived from analysis and simulation results of hardware circuits of GPU. Although low power3 D graphics ha...This paper studies some programming techniques for low power rendering for 3 D graphics. These techniques are derived from analysis and simulation results of hardware circuits of GPU. Although low power3 D graphics hardware design has been studied by other researchers,low power programming techniques from hardware perspective have not been investigated in depth. There are many factors that affect 3 D graphics rendering performance,such as the number of vertices,vertex sharing,level of details,texture mapping,and rendering algorithms. An analytical study of graphics rendering workload is performed and the effect of a number of programming tips such as vertex sharing,clock gating and buffering of unmoving or translational objects is deeply studied. The results presented in this paper can be used to guide 3 D graphics programming for optimizing both power consumption and performance.展开更多
3D visualization technology is a tool used for displaying, describing, and understanding the characteristics of geologic bodies, and features high efficiency, objective accuracy, visual expression, etc. In this paper,...3D visualization technology is a tool used for displaying, describing, and understanding the characteristics of geologic bodies, and features high efficiency, objective accuracy, visual expression, etc. In this paper, the man-machine interactive interpretation and 3D visualization technology rapidly displaying and analyzing the 3D seismic data of hydrate ore volume is researched and developed using the hybrid rendering technique. Through the integrated interpretation on the 3D space structure, stratum, and seismic attributes, the visualized multi-attribute superimposition analysis is implemented for describing the spatial distribution characteristics of hydrate ore volume and exquisitely describing the subtle geological characteristics of hydrate ore volume. By the hybrid rendering technique, authentication and interpretation are provided for the geological exploration work, so as to greatly enhance the visualization and accuracy of the geological analysis, and also provide a good decision-making foundation for the subsequent development of resources.展开更多
Objective To investigate the surgical technique and outcomes of replacement of chordae tendineae in mitral valve repair,and evaluate the value of real-time three-di-mensional transesophageal echocardiography in the pe...Objective To investigate the surgical technique and outcomes of replacement of chordae tendineae in mitral valve repair,and evaluate the value of real-time three-di-mensional transesophageal echocardiography in the perioperative period. Methods Thirty-one patients with mitral valve prolapse underwent mitral valve repair using chordae tendineae replacement concomitant with implantation展开更多
Landslides have occurred frequently in the Luoshan mining area because of disordered mining.This paper discusses the landforms and physiognomy,hydro-meteorology,formation lithology,and geologic structure of the Luosha...Landslides have occurred frequently in the Luoshan mining area because of disordered mining.This paper discusses the landforms and physiognomy,hydro-meteorology,formation lithology,and geologic structure of the Luoshan mining area.It also describes the factors influencing the slope stability of landslide No.Ⅲ,determines the general parameters and typical section plane,analyzes the stress-strain state of the No.Ⅲ slope,and calculates its safety factors with FLAC3 D under saturated and natural conditions.Based on a stability analysis,a remote real-time monitoring system was applied to the No.Ⅲ slope,and these monitoring data were collected and analyzed.展开更多
Modern computer techniques have been in use for several years to generate three-dimensional visualizations of human anatomy. Very good 3-D computer models of the human body are now available and used routinely in anat...Modern computer techniques have been in use for several years to generate three-dimensional visualizations of human anatomy. Very good 3-D computer models of the human body are now available and used routinely in anatomy instruction. These techniques are subsumed under the heading “virtual anatomy” to distinguish them from the conventional study of anatomy entailing cadavers and anatomy textbooks. Moreover, other imaging procedures (X-ray, angiography, CT and MR) are also used in virtual anatomy instruction. A recently introduced three-dimensional post-processing technique named Cinematic Rendering now makes it possible to use the output of routine CT and MR examinations as the basis for highly photo-realistic 3-D depictions of human anatomy. We have installed Cinematic Rendering (enabled for stereoscopy) in a high-definition 8K 3-D projection space that accommodates an audience of 150. The space’s projection surface measures 16 × 9 meters;images can be projected on both the front wall and the floor. A game controller can be used to operate Cinematic Rendering software so that it can generate interactive real-time depictions of human anatomy on the basis of CT and MR data sets. This prototype installation was implemented without technical problems;in day-to-day, real-world use over a period of 22 months, there were no impairments of service due to software crashes or other technical problems. We are already employing this installation routinely for educational offerings open to the public, courses for students in the health professions, and (continuing) professional education units for medical interns, residents and specialists—in, so to speak, the dissecting theater of the future.展开更多
The volumetric rendering of 3 D medical image data is very effective method for communication about radiological studies to clinicians. Algorithms that produce images with artifacts and inaccuracies are not clinically...The volumetric rendering of 3 D medical image data is very effective method for communication about radiological studies to clinicians. Algorithms that produce images with artifacts and inaccuracies are not clinically useful. This paper proposed a direct voxel projection algorithm to implement volumetric data rendering. Using this algorithm, arbitrary volume rotation, transparent and cutaway views are generated satisfactorily. Compared with the existing raytracing methods, it improves the projection image quality greatly. Some experimental results about real medical CT image data demonstrate the advantages and fidelity of the proposed algorithm.展开更多
This paper extends the SPH method to gas simulation. The SPH (Smoothed Particles Hydrodynamics) method is the most popular method of flow simulation, which is widely used in large-scale liquid simulation. However, i...This paper extends the SPH method to gas simulation. The SPH (Smoothed Particles Hydrodynamics) method is the most popular method of flow simulation, which is widely used in large-scale liquid simulation. However, it is not found to apply to gas simulation, since those methods based on SPH can't be used in real-time simulation due to their enormous particles and huge computation. This paper proposes a method for gas simulation based on SPH with a small number of particles. Firstly, the method computes the position and density of each particle in each point-in-time, and outlines the shape of the simulated gas based on those particles. Secondly the method uses the grid technique to refine the shape with the diffusion of particle's density under the control of grid, and get more lifelike simulation result. Each grid will be assigned density according to the particles in it. The density determines the final appearance of the grid. For ensuring the natural transition of the color between adjacent grids, we give a diffuse process of density between these grids and assign appropriate values to vertexes of these grids. The experimental results show that the proposed method can give better gas simulation and meet the request of real-time.展开更多
In recent years, the computer drawing technology that deals with three-dimensional (3D) design of footwear has become hot topics. Rhino is a kind of common and practical 3D design software with strong drawing and rend...In recent years, the computer drawing technology that deals with three-dimensional (3D) design of footwear has become hot topics. Rhino is a kind of common and practical 3D design software with strong drawing and rendering graphics function, which is widely used to design industrial products. In this paper, through decomposition and modeling, modeling and drawing methods were analyzed in various parts of footwear by Rhino, as well as the smooth technology and adjustments to its profile curve by an example of lady's high boots. Finally, through a series introductions of rendering effects for footwear in color, light perception, grain characteristic, and 3D graphics, the main technical essential is achieved and difficulties in design of overall footwear styles are solved.展开更多
In order to perform a high-quality interactive rendering of large medical data sets on a single off-the-shelf PC, a LOD selection algorithm for multi-resolution volume rendering using 3D texture mapping is presented, ...In order to perform a high-quality interactive rendering of large medical data sets on a single off-the-shelf PC, a LOD selection algorithm for multi-resolution volume rendering using 3D texture mapping is presented, which uses an adaptive scheme that renders the volume in a region-of-interest at a high resolution and the volume away from this region at lower resolutions. The algorithm is based on several important criteria, and rendering is done adaptively by selecting high-resolution cells close to a center of attention and low-resolution cells away from this area. In addition, our hierarchical level-of-detail representation guarantees consistent interpolation between different resolution levels. Experiments have been applied to a number of large medical data and have produced high quality images at interactive frame rates using standard PC hardware.展开更多
A real-time monitoring and 3D visualization analysis system is proposed for dam foundation curtain grouting. Based on the real-time control technology, the optimization method and the set theory, a mathematical model ...A real-time monitoring and 3D visualization analysis system is proposed for dam foundation curtain grouting. Based on the real-time control technology, the optimization method and the set theory, a mathematical model of the system is established. The real-time collection and transmission technology of the grouting data provides a data foundation for the system. The real-time grouting monitoring and dynamic alarming method helps the system control the grouting quality during the grouting process, thus, the abnormalities of grouting, such as jacking and hydraulic uplift, can be effectively controlled. In addition, the 3D grouting visualization analysis technology is proposed to establish the grouting information model(GIM). The GIM provides a platform to visualize and analyze the grouting process and results. The system has been applied to a hydraulic project of China as a case study, and the application results indicate that the real-time grouting monitoring and 3D visualization analysis for the grouting process can help engineers control the grouting quality more efficiently.展开更多
Fire rescue challenges and solutions have evolved from straightfor-ward plane rescue to encompass 3D space due to the rise of high-rise city buildings.Hence,this study facilitates a system with quick and simplified on...Fire rescue challenges and solutions have evolved from straightfor-ward plane rescue to encompass 3D space due to the rise of high-rise city buildings.Hence,this study facilitates a system with quick and simplified on-site launching and generates real-time location data,enabling fire rescuers to arrive at the intended spot faster and correctly for effective and precise rescue.Auto-positioning with step-by-step instructions is proposed when launching the locating system,while no extra measuring instrument like Total Station(TS)is needed.Real-time location tracking is provided via a 3D space real-time locating system(RTLS)constructed using Ultra-wide Bandwidth technology(UWB),which requires electromagnetic waves to pass through concrete walls.A hybrid weighted least squares with a time difference of arrival(WLS/TDOA)positioning method is proposed to address real path-tracking issues in 3D space and to meet RTLS requirements for quick computing in real-world applications.The 3D WLS/TDOA algorithm is theoretically constructed with the Cramer-Rao lower bound(CRLB).The computing complexity is reduced to the lower bound for embedded hardware to directly compute the time differential of the arriving signals using the time-to-digital converter(TDC).The results of the experiments show that the errors are controlled when the positioning algorithm is applied in various complicated situations to fulfill the requirements of engineering applications.The statistical analysis of the data reveals that the proposed UWB RTLS auto-positioning system can track target tags with an accuracy of 0.20 m.展开更多
渲染是一种计算机图形图像生成技术,它以存储在计算机中的几何场景模型为基础,经过附加色彩、纹理及材质,并根据设定的光照条件及场景光照关系,计算生成具有高真实度的视景图像。实现3D动画渲染十分消耗计算机的性能,为了减少3D动画渲...渲染是一种计算机图形图像生成技术,它以存储在计算机中的几何场景模型为基础,经过附加色彩、纹理及材质,并根据设定的光照条件及场景光照关系,计算生成具有高真实度的视景图像。实现3D动画渲染十分消耗计算机的性能,为了减少3D动画渲染所花费的时间,利用德国maxon公司Cinema 4D软件的Cinema 4D Team Render对3D动画进行分布式渲染测试。结果表明,此种方法确实可以成倍地减少3D动画渲染所花费的时间。展开更多
The emergence of high performance 3D graphics cards has opened the way to PC clusters for high performance multi- display environment. In order to exploit the rendering ability of PC clusters, we should design appropr...The emergence of high performance 3D graphics cards has opened the way to PC clusters for high performance multi- display environment. In order to exploit the rendering ability of PC clusters, we should design appropriate parallel rendering algorithms and parallel graphics library interfaces. Due to the rapid development of Direct3D, we bring forward DPGL, the Direct3D9-based parallel graphics library in D3DPR parallel rendering system, which implements Direct3D9 interfaces to support existing Direct3D9 application parallelization with no modification. Based on the parallelism analysis of Direct3D9 rendering pipeline, we briefly introduce D3DPR parallel rendering system. DPGL is the fundamental component of D3DPR. After presenting DPGL three layers architecture, we discuss the rendering resource interception and management. Finally, we describe the design and implementation of DPGL in detail, including rendering command interception layer, rendering command interpretation layer and rendering resource parallelization layer.展开更多
基金the Science and Technology Program of Educational Commission of Jiangxi Province,China(DA202104172)the Innovation and Entrepreneurship Course Program of Nanchang Hangkong University(KCPY1910)the Teaching Reform Research Program of Nanchang Hangkong University(JY21040).
文摘Background In recent years, with the rapid development of mobile Internet and Web3D technologies, a large number of web-based online 3D visualization applications have emerged. Web3D applications, including Web3D online tourism, Web3D online architecture, Web3D online education environment, Web3D online medical care, and Web3D online shopping are examples of these applications that leverage 3D rendering on the web. These applications have pushed the boundaries of traditional web applications that use text, sound, image, video, and 2D animation as their main communication media, and resorted to 3D virtual scenes as the main interaction object, enabling a user experience that delivers a strong sense of immersion. This paper approached the emerging Web3D applications that generate stronger impacts on people's lives through “real-time rendering technology”, which is the core technology of Web3D. This paper discusses all the major 3D graphics APIs of Web3D and the well-known Web3D engines at home and abroad and classify the real-time rendering frameworks of Web3D applications into different categories. Results Finally, this study analyzed the specific demand posed by different fields to Web3D applications by referring to the representative Web3D applications in each particular field. Conclusions Our survey results show that Web3D applications based on real-time rendering have in-depth sectors of society and even family, which is a trend that has influence on every line of industry.
基金The National Natural Science Foundation of China(No.61473088)Six Talent Peaks Projects in Jiangsu Province
文摘To improve the sense of reality on perception, an improved algorithm of 3D shape haptic rendering is put forward based on a finger mounted vibrotactile device. The principle is that the interactive information and the shape information are conveyed to users when they touch virtual objects at mobile terminals by attaching the vibrotactile feedback on a fingertip. The extraction of shape characteristics, the interactive information and the mapping of shape in formation of vibration stimulation are key parts of the proposed algorithm to realize the real tactile rendering. The contact status of the interaction process, the height information and local gradient of the touch point are regarded as shape information and used to control the vibration intension, rhythm and distribution of the vibrators. With different contact status and shape information, the vibration pattern can be adjusted in time to imitate the outlines of virtual objects. Finally, the effectiveness of the algorithm is verified by shape perception experiments. The results show that the improved algorithm is effective for 3D shape haptic rendering.
基金Sponsored by the Key Program of National Natural Science Foundation of China(Grant No61136002)the Research Grants from the Shaanxi Provincial Government(Grant Nos.2013KTZB01-07,2014ZS-08 and S2015TQGY0166)the Shaanxi Education Bureau(Grant No.2050205)
文摘This paper studies some programming techniques for low power rendering for 3 D graphics. These techniques are derived from analysis and simulation results of hardware circuits of GPU. Although low power3 D graphics hardware design has been studied by other researchers,low power programming techniques from hardware perspective have not been investigated in depth. There are many factors that affect 3 D graphics rendering performance,such as the number of vertices,vertex sharing,level of details,texture mapping,and rendering algorithms. An analytical study of graphics rendering workload is performed and the effect of a number of programming tips such as vertex sharing,clock gating and buffering of unmoving or translational objects is deeply studied. The results presented in this paper can be used to guide 3 D graphics programming for optimizing both power consumption and performance.
文摘3D visualization technology is a tool used for displaying, describing, and understanding the characteristics of geologic bodies, and features high efficiency, objective accuracy, visual expression, etc. In this paper, the man-machine interactive interpretation and 3D visualization technology rapidly displaying and analyzing the 3D seismic data of hydrate ore volume is researched and developed using the hybrid rendering technique. Through the integrated interpretation on the 3D space structure, stratum, and seismic attributes, the visualized multi-attribute superimposition analysis is implemented for describing the spatial distribution characteristics of hydrate ore volume and exquisitely describing the subtle geological characteristics of hydrate ore volume. By the hybrid rendering technique, authentication and interpretation are provided for the geological exploration work, so as to greatly enhance the visualization and accuracy of the geological analysis, and also provide a good decision-making foundation for the subsequent development of resources.
文摘Objective To investigate the surgical technique and outcomes of replacement of chordae tendineae in mitral valve repair,and evaluate the value of real-time three-di-mensional transesophageal echocardiography in the perioperative period. Methods Thirty-one patients with mitral valve prolapse underwent mitral valve repair using chordae tendineae replacement concomitant with implantation
文摘Landslides have occurred frequently in the Luoshan mining area because of disordered mining.This paper discusses the landforms and physiognomy,hydro-meteorology,formation lithology,and geologic structure of the Luoshan mining area.It also describes the factors influencing the slope stability of landslide No.Ⅲ,determines the general parameters and typical section plane,analyzes the stress-strain state of the No.Ⅲ slope,and calculates its safety factors with FLAC3 D under saturated and natural conditions.Based on a stability analysis,a remote real-time monitoring system was applied to the No.Ⅲ slope,and these monitoring data were collected and analyzed.
文摘Modern computer techniques have been in use for several years to generate three-dimensional visualizations of human anatomy. Very good 3-D computer models of the human body are now available and used routinely in anatomy instruction. These techniques are subsumed under the heading “virtual anatomy” to distinguish them from the conventional study of anatomy entailing cadavers and anatomy textbooks. Moreover, other imaging procedures (X-ray, angiography, CT and MR) are also used in virtual anatomy instruction. A recently introduced three-dimensional post-processing technique named Cinematic Rendering now makes it possible to use the output of routine CT and MR examinations as the basis for highly photo-realistic 3-D depictions of human anatomy. We have installed Cinematic Rendering (enabled for stereoscopy) in a high-definition 8K 3-D projection space that accommodates an audience of 150. The space’s projection surface measures 16 × 9 meters;images can be projected on both the front wall and the floor. A game controller can be used to operate Cinematic Rendering software so that it can generate interactive real-time depictions of human anatomy on the basis of CT and MR data sets. This prototype installation was implemented without technical problems;in day-to-day, real-world use over a period of 22 months, there were no impairments of service due to software crashes or other technical problems. We are already employing this installation routinely for educational offerings open to the public, courses for students in the health professions, and (continuing) professional education units for medical interns, residents and specialists—in, so to speak, the dissecting theater of the future.
基金Shanghai Science and Technology Devel-opment Fund(9944 190 2 7)
文摘The volumetric rendering of 3 D medical image data is very effective method for communication about radiological studies to clinicians. Algorithms that produce images with artifacts and inaccuracies are not clinically useful. This paper proposed a direct voxel projection algorithm to implement volumetric data rendering. Using this algorithm, arbitrary volume rotation, transparent and cutaway views are generated satisfactorily. Compared with the existing raytracing methods, it improves the projection image quality greatly. Some experimental results about real medical CT image data demonstrate the advantages and fidelity of the proposed algorithm.
基金Supported by National Natural Science Foundation of China(No.61272024)
文摘This paper extends the SPH method to gas simulation. The SPH (Smoothed Particles Hydrodynamics) method is the most popular method of flow simulation, which is widely used in large-scale liquid simulation. However, it is not found to apply to gas simulation, since those methods based on SPH can't be used in real-time simulation due to their enormous particles and huge computation. This paper proposes a method for gas simulation based on SPH with a small number of particles. Firstly, the method computes the position and density of each particle in each point-in-time, and outlines the shape of the simulated gas based on those particles. Secondly the method uses the grid technique to refine the shape with the diffusion of particle's density under the control of grid, and get more lifelike simulation result. Each grid will be assigned density according to the particles in it. The density determines the final appearance of the grid. For ensuring the natural transition of the color between adjacent grids, we give a diffuse process of density between these grids and assign appropriate values to vertexes of these grids. The experimental results show that the proposed method can give better gas simulation and meet the request of real-time.
文摘In recent years, the computer drawing technology that deals with three-dimensional (3D) design of footwear has become hot topics. Rhino is a kind of common and practical 3D design software with strong drawing and rendering graphics function, which is widely used to design industrial products. In this paper, through decomposition and modeling, modeling and drawing methods were analyzed in various parts of footwear by Rhino, as well as the smooth technology and adjustments to its profile curve by an example of lady's high boots. Finally, through a series introductions of rendering effects for footwear in color, light perception, grain characteristic, and 3D graphics, the main technical essential is achieved and difficulties in design of overall footwear styles are solved.
基金the Advanced Project Foundation between China and France(PRA SI03-02).
文摘In order to perform a high-quality interactive rendering of large medical data sets on a single off-the-shelf PC, a LOD selection algorithm for multi-resolution volume rendering using 3D texture mapping is presented, which uses an adaptive scheme that renders the volume in a region-of-interest at a high resolution and the volume away from this region at lower resolutions. The algorithm is based on several important criteria, and rendering is done adaptively by selecting high-resolution cells close to a center of attention and low-resolution cells away from this area. In addition, our hierarchical level-of-detail representation guarantees consistent interpolation between different resolution levels. Experiments have been applied to a number of large medical data and have produced high quality images at interactive frame rates using standard PC hardware.
基金Supported by the Innovative Research Groups of the National Natural Science Foundation of China(No.51321065)the National Natural Science Foundation of China(No.51339003 and No.51439005)
文摘A real-time monitoring and 3D visualization analysis system is proposed for dam foundation curtain grouting. Based on the real-time control technology, the optimization method and the set theory, a mathematical model of the system is established. The real-time collection and transmission technology of the grouting data provides a data foundation for the system. The real-time grouting monitoring and dynamic alarming method helps the system control the grouting quality during the grouting process, thus, the abnormalities of grouting, such as jacking and hydraulic uplift, can be effectively controlled. In addition, the 3D grouting visualization analysis technology is proposed to establish the grouting information model(GIM). The GIM provides a platform to visualize and analyze the grouting process and results. The system has been applied to a hydraulic project of China as a case study, and the application results indicate that the real-time grouting monitoring and 3D visualization analysis for the grouting process can help engineers control the grouting quality more efficiently.
文摘Fire rescue challenges and solutions have evolved from straightfor-ward plane rescue to encompass 3D space due to the rise of high-rise city buildings.Hence,this study facilitates a system with quick and simplified on-site launching and generates real-time location data,enabling fire rescuers to arrive at the intended spot faster and correctly for effective and precise rescue.Auto-positioning with step-by-step instructions is proposed when launching the locating system,while no extra measuring instrument like Total Station(TS)is needed.Real-time location tracking is provided via a 3D space real-time locating system(RTLS)constructed using Ultra-wide Bandwidth technology(UWB),which requires electromagnetic waves to pass through concrete walls.A hybrid weighted least squares with a time difference of arrival(WLS/TDOA)positioning method is proposed to address real path-tracking issues in 3D space and to meet RTLS requirements for quick computing in real-world applications.The 3D WLS/TDOA algorithm is theoretically constructed with the Cramer-Rao lower bound(CRLB).The computing complexity is reduced to the lower bound for embedded hardware to directly compute the time differential of the arriving signals using the time-to-digital converter(TDC).The results of the experiments show that the errors are controlled when the positioning algorithm is applied in various complicated situations to fulfill the requirements of engineering applications.The statistical analysis of the data reveals that the proposed UWB RTLS auto-positioning system can track target tags with an accuracy of 0.20 m.
文摘渲染是一种计算机图形图像生成技术,它以存储在计算机中的几何场景模型为基础,经过附加色彩、纹理及材质,并根据设定的光照条件及场景光照关系,计算生成具有高真实度的视景图像。实现3D动画渲染十分消耗计算机的性能,为了减少3D动画渲染所花费的时间,利用德国maxon公司Cinema 4D软件的Cinema 4D Team Render对3D动画进行分布式渲染测试。结果表明,此种方法确实可以成倍地减少3D动画渲染所花费的时间。
基金This work was supported by National Basic Research Program of China (No.2002CB312105)Key National Natural Science Foundation of China Project on Digital Olympic Museum(No.60533080).
文摘The emergence of high performance 3D graphics cards has opened the way to PC clusters for high performance multi- display environment. In order to exploit the rendering ability of PC clusters, we should design appropriate parallel rendering algorithms and parallel graphics library interfaces. Due to the rapid development of Direct3D, we bring forward DPGL, the Direct3D9-based parallel graphics library in D3DPR parallel rendering system, which implements Direct3D9 interfaces to support existing Direct3D9 application parallelization with no modification. Based on the parallelism analysis of Direct3D9 rendering pipeline, we briefly introduce D3DPR parallel rendering system. DPGL is the fundamental component of D3DPR. After presenting DPGL three layers architecture, we discuss the rendering resource interception and management. Finally, we describe the design and implementation of DPGL in detail, including rendering command interception layer, rendering command interpretation layer and rendering resource parallelization layer.