A 3- D free surface flow in open channels based on the Reynolds equations with the k-ε turbulence closure model is presented in this paper. Insted of the 'rigid lid' approximation, the solution of the free su...A 3- D free surface flow in open channels based on the Reynolds equations with the k-ε turbulence closure model is presented in this paper. Insted of the 'rigid lid' approximation, the solution of the free surface equation is implemented in the velocity-pressure iterative procedure on the basis of the conventional SIMPLE method. This model was used to compute the flow in rectangular channels with trenches dredged across the bottom. The velocity, eddy viscosity coefficient, turbulent shear stress, turbulent kinetic energy and elevation of the free surface can be obtained. The computed results are in good agreement with previous experimental data.展开更多
The standard three dimensional(3D) k-ε turbulence model was applied to simulate the flow field of a small scale combined oxidation ditch. The moving mesh approach was used to model the rotor of the ditch. Compariso...The standard three dimensional(3D) k-ε turbulence model was applied to simulate the flow field of a small scale combined oxidation ditch. The moving mesh approach was used to model the rotor of the ditch. Comparison of the computed and the measured data is acceptable. A vertical reverse flow zone in the ditch was found, and it played a very important role in the ditch flow behavior. The flow pattern in the ditch is discussed in detail, and approaches are suggested to improve the hydrodynamic performance in the ditch.展开更多
A second-moment closure for the near-wall turbulence is proposed. The limiting behaviour of this closure near a wall is consistent with that of the exact Reynolds-stress transport equations, and it converts asymptotic...A second-moment closure for the near-wall turbulence is proposed. The limiting behaviour of this closure near a wall is consistent with that of the exact Reynolds-stress transport equations, and it converts asymptotically into a high- Reynolds-number closure remote from the wall. The closure is applied to a pressure- driven 3D transient channel flow. The predicted results are in fair agreement with the DNS data.展开更多
According to turbulent theory and characteristics of beam blank continuous casting, 3-D model to represent the flow of beam blank mould is established. The predicted results indicate that the exit obliquity of up 15...According to turbulent theory and characteristics of beam blank continuous casting, 3-D model to represent the flow of beam blank mould is established. The predicted results indicate that the exit obliquity of up 15°(+15°) should be adopted, which will benefit the floatation of non-metallic inclusion and purification of the molten steel. When the nozzle angle is 120°, the flow pattern is reasonable. Proper nozzle depth can be 200mm. Turbulent kinetic of meniscus can be reduced by adopting the square nozzle and suitable area of side outlet when casting speed increases. The results are consistent with those of water model experiment, so the model is exact and reasonable. The model can provide important information for design of SEN and defining of immersion depth.展开更多
A comprehensive 3D turbulent CFD study has been carried out to simulate a Low-Head(LH)vertical Direct Chill(DC)rolling ingot caster for the common magnesium alloy AZ31.The model used in this study takes into account t...A comprehensive 3D turbulent CFD study has been carried out to simulate a Low-Head(LH)vertical Direct Chill(DC)rolling ingot caster for the common magnesium alloy AZ31.The model used in this study takes into account the coupled laminar/turbulent melt flow and solidification aspects of the process and is based on the control-volume finite-difference approach.Following the aluminum/magnesium DC casting industrial practices,the LH mold is taken as 30 mm with a hot top of 60 mm.The previously verified in-house code has been modified to model the present casting process.Important quantitative results are obtained for four casting speeds,for three inlet melt pouring temperatures(superheats)and for three metal-mold contact heat transfer coefficients for the steady state operational phase of the caster.The variable cooling water temperatures reported by the industry are considered for the primary and secondary cooling zones during the simulations.Specifically,the temperature and velocity fields,sump depth and sump profiles,mushy region thickness,solid shell thickness at the exit of the mold and axial temperature profiles at the center and at three strategic locations at the surface of the slab are presented and discussed.展开更多
A staggered finite-volume technique for non-hydrostatic, small amplitude free surface flow governed by the incompressible Navier-Stokes equations is presented there is a proper balance between accuracy and computing t...A staggered finite-volume technique for non-hydrostatic, small amplitude free surface flow governed by the incompressible Navier-Stokes equations is presented there is a proper balance between accuracy and computing time. The advection and horizontal diffusion terms in the momentum equation are discretized by an integral interpolation method on the orthogonal unstructured staggered mesh and, while it has the attractive property of being conservative. The pressure-correction algorithm is employed for the non-hydrostatic pressure in order to achieve second-order temporal accuracy. A conservative scalar transport algorithm is also applied to discretize k - c equations in this model. The eddy viscosity is calculated from the k-c turbulent model. The resulting model is mass and momentum conservative. The model is verified by two examples to simulate unsteady small amplitude free surface flows where non-hydrostatic pressures have a considerable effect on the velocity field, and then applied to simulate the tidal flow in the Bohai Sea.展开更多
This paper presents a 3D mathematical model for suspended load transport in turbulent flows. Based on Dous stochastic theory of turbulent flow, numerical schemes of Reynolds stresses for anisotropic turbulent flows we...This paper presents a 3D mathematical model for suspended load transport in turbulent flows. Based on Dous stochastic theory of turbulent flow, numerical schemes of Reynolds stresses for anisotropic turbulent flows were obtained. A refined wall function was employed to treat solid wall boundaries. The equations for 2D suspended load motion and sorting of bed material have been expanded into 3D cases. Numerical results are validated by the measured data of the Gezhouba Project, and proved to be in good agreement with the experimental. The present method has been employed to simulate sediment erosion and deposition in the dam area of Three Gorges Project, and for the operation of the project, siltation process and deposition pattern in the near-dam area of the reservoir, size distribution of the deposits and bed material, and flow fields and sediment concentration fields at different time and elevations are predicted. The predicted results are close to the experimental observations in physical model studies. Thus, a new method is established for 3D simulation of sediment motion in dam areas of multi-purpose water projects.展开更多
A generalized hend flow model, treating a 90° single bend and 60° continuous hends, was designed to quantitatively describe 3-D turhulenee mechanism of circulating notfully-developed flow in open channels wi...A generalized hend flow model, treating a 90° single bend and 60° continuous hends, was designed to quantitatively describe 3-D turhulenee mechanism of circulating notfully-developed flow in open channels with hends. The 3-D fluctuating veloeities of turbulent flow were measured and analyzed with a 3 D acoustic-Doppler velocimeter. Formula for 3 D turbulent intensity was derived using the dimension analysis approaeh. Expressions of vertical turbulent intensity distributions were obtained with the multivariant-rcgression theo ry, whieh agree with experiment data. Distrihutions of turbulent intensity and turbulent stress were characterized, and their relationships were concluded. In the bend-turbulent flow core region, longitudinal and lateral turbulent-intensity distri hutions are coincident with linear distribution, hut in nearwall region are coincident with the Gamma distribution. Verotical turbulent intensity distributions are coincident with the Rayleigh distribution. Herein, it is concluded that the bend turbulence is anisotropic.展开更多
With the application of body-fitted coordinate method and the standard k-epsilon equations,the rtumericat sotution to the averaged N-S equations is obtained.Laminar and turbu- tent flows inside a 90-Deg-Bent duct are ...With the application of body-fitted coordinate method and the standard k-epsilon equations,the rtumericat sotution to the averaged N-S equations is obtained.Laminar and turbu- tent flows inside a 90-Deg-Bent duct are studied,yielding good results.展开更多
Ⅰ. INTRODUCTIONThe flow phenomena that exist in the advanced turbomachinery are extremely complex and propose a challenge to the engineers and scientists to improve the design procedure. The rapid progress of high sp...Ⅰ. INTRODUCTIONThe flow phenomena that exist in the advanced turbomachinery are extremely complex and propose a challenge to the engineers and scientists to improve the design procedure. The rapid progress of high speed and large capacity computers has encouraged the development of computational fluid dynamics that has had an increasingly important influence on turbomachinery blade design and analysis. Compared with the inviscid solver, the N.S.展开更多
Based on the standard k-ε turbulence model, a new compressible k-ε model considering the pressure expansion influence due to the compressibility of fluid is developed and applied to the simulation of 3D transonic tu...Based on the standard k-ε turbulence model, a new compressible k-ε model considering the pressure expansion influence due to the compressibility of fluid is developed and applied to the simulation of 3D transonic turbulent flows in a nozzle and a cascade. The Reynolds avenged N-S equations in generalized curvilinear coordinates are solved with implementation of the new model. The high resolution TVD scheme is used to discretize the convective terms. The numerical results show that the compressible k-ε model behaves well in the simulation of transonic internal turbulent flows.展开更多
A 3-D model based on the Reynolds equations with closed k-ε turbulence model is presented in this paper,which can be used to predict surface water flow in open channels.In- stead of the“rigid lid”approximation,the ...A 3-D model based on the Reynolds equations with closed k-ε turbulence model is presented in this paper,which can be used to predict surface water flow in open channels.In- stead of the“rigid lid”approximation,the solution of the free surface equation is implemented in the velocity-pressure iterative procedure on the basis of the conventional SIMPLE method.This model was used to compute the flow in rectangular channels with trenches dredged across the bot- tom.The velocity,eddy viscosity coefficient,turbulent shear stress,turbulent kinetic energy and elevation of the free surface over the trenches dredged in the main channel,can be obtained. The computed results are in good agreement with existing experimentaing data.展开更多
文摘A 3- D free surface flow in open channels based on the Reynolds equations with the k-ε turbulence closure model is presented in this paper. Insted of the 'rigid lid' approximation, the solution of the free surface equation is implemented in the velocity-pressure iterative procedure on the basis of the conventional SIMPLE method. This model was used to compute the flow in rectangular channels with trenches dredged across the bottom. The velocity, eddy viscosity coefficient, turbulent shear stress, turbulent kinetic energy and elevation of the free surface can be obtained. The computed results are in good agreement with previous experimental data.
基金The Specialized Research Fund for the Doctoral Programof Higher Education(No.20010610023) and the Sino-Finnish Scientific and TechnologicalCooperation Program
文摘The standard three dimensional(3D) k-ε turbulence model was applied to simulate the flow field of a small scale combined oxidation ditch. The moving mesh approach was used to model the rotor of the ditch. Comparison of the computed and the measured data is acceptable. A vertical reverse flow zone in the ditch was found, and it played a very important role in the ditch flow behavior. The flow pattern in the ditch is discussed in detail, and approaches are suggested to improve the hydrodynamic performance in the ditch.
基金The project supported by the National Natural Science Foundation of China
文摘A second-moment closure for the near-wall turbulence is proposed. The limiting behaviour of this closure near a wall is consistent with that of the exact Reynolds-stress transport equations, and it converts asymptotically into a high- Reynolds-number closure remote from the wall. The closure is applied to a pressure- driven 3D transient channel flow. The predicted results are in fair agreement with the DNS data.
文摘According to turbulent theory and characteristics of beam blank continuous casting, 3-D model to represent the flow of beam blank mould is established. The predicted results indicate that the exit obliquity of up 15°(+15°) should be adopted, which will benefit the floatation of non-metallic inclusion and purification of the molten steel. When the nozzle angle is 120°, the flow pattern is reasonable. Proper nozzle depth can be 200mm. Turbulent kinetic of meniscus can be reduced by adopting the square nozzle and suitable area of side outlet when casting speed increases. The results are consistent with those of water model experiment, so the model is exact and reasonable. The model can provide important information for design of SEN and defining of immersion depth.
文摘A comprehensive 3D turbulent CFD study has been carried out to simulate a Low-Head(LH)vertical Direct Chill(DC)rolling ingot caster for the common magnesium alloy AZ31.The model used in this study takes into account the coupled laminar/turbulent melt flow and solidification aspects of the process and is based on the control-volume finite-difference approach.Following the aluminum/magnesium DC casting industrial practices,the LH mold is taken as 30 mm with a hot top of 60 mm.The previously verified in-house code has been modified to model the present casting process.Important quantitative results are obtained for four casting speeds,for three inlet melt pouring temperatures(superheats)and for three metal-mold contact heat transfer coefficients for the steady state operational phase of the caster.The variable cooling water temperatures reported by the industry are considered for the primary and secondary cooling zones during the simulations.Specifically,the temperature and velocity fields,sump depth and sump profiles,mushy region thickness,solid shell thickness at the exit of the mold and axial temperature profiles at the center and at three strategic locations at the surface of the slab are presented and discussed.
基金financially supported by the Science and Technology Project of the Ministry of Transport (Grant No. 2011329224170)
文摘A staggered finite-volume technique for non-hydrostatic, small amplitude free surface flow governed by the incompressible Navier-Stokes equations is presented there is a proper balance between accuracy and computing time. The advection and horizontal diffusion terms in the momentum equation are discretized by an integral interpolation method on the orthogonal unstructured staggered mesh and, while it has the attractive property of being conservative. The pressure-correction algorithm is employed for the non-hydrostatic pressure in order to achieve second-order temporal accuracy. A conservative scalar transport algorithm is also applied to discretize k - c equations in this model. The eddy viscosity is calculated from the k-c turbulent model. The resulting model is mass and momentum conservative. The model is verified by two examples to simulate unsteady small amplitude free surface flows where non-hydrostatic pressures have a considerable effect on the velocity field, and then applied to simulate the tidal flow in the Bohai Sea.
基金the Ninth Five-Year Plan, Three Gorges Project Engineering Sediment Problem Fundamental Research Grant(95-3-3) the National Natural Science Foundation of China(Grant Nos. 50179015, 503).
文摘This paper presents a 3D mathematical model for suspended load transport in turbulent flows. Based on Dous stochastic theory of turbulent flow, numerical schemes of Reynolds stresses for anisotropic turbulent flows were obtained. A refined wall function was employed to treat solid wall boundaries. The equations for 2D suspended load motion and sorting of bed material have been expanded into 3D cases. Numerical results are validated by the measured data of the Gezhouba Project, and proved to be in good agreement with the experimental. The present method has been employed to simulate sediment erosion and deposition in the dam area of Three Gorges Project, and for the operation of the project, siltation process and deposition pattern in the near-dam area of the reservoir, size distribution of the deposits and bed material, and flow fields and sediment concentration fields at different time and elevations are predicted. The predicted results are close to the experimental observations in physical model studies. Thus, a new method is established for 3D simulation of sediment motion in dam areas of multi-purpose water projects.
文摘A generalized hend flow model, treating a 90° single bend and 60° continuous hends, was designed to quantitatively describe 3-D turhulenee mechanism of circulating notfully-developed flow in open channels with hends. The 3-D fluctuating veloeities of turbulent flow were measured and analyzed with a 3 D acoustic-Doppler velocimeter. Formula for 3 D turbulent intensity was derived using the dimension analysis approaeh. Expressions of vertical turbulent intensity distributions were obtained with the multivariant-rcgression theo ry, whieh agree with experiment data. Distrihutions of turbulent intensity and turbulent stress were characterized, and their relationships were concluded. In the bend-turbulent flow core region, longitudinal and lateral turbulent-intensity distri hutions are coincident with linear distribution, hut in nearwall region are coincident with the Gamma distribution. Verotical turbulent intensity distributions are coincident with the Rayleigh distribution. Herein, it is concluded that the bend turbulence is anisotropic.
文摘With the application of body-fitted coordinate method and the standard k-epsilon equations,the rtumericat sotution to the averaged N-S equations is obtained.Laminar and turbu- tent flows inside a 90-Deg-Bent duct are studied,yielding good results.
基金Project supported by the National Natural Science Foundation of China
文摘Ⅰ. INTRODUCTIONThe flow phenomena that exist in the advanced turbomachinery are extremely complex and propose a challenge to the engineers and scientists to improve the design procedure. The rapid progress of high speed and large capacity computers has encouraged the development of computational fluid dynamics that has had an increasingly important influence on turbomachinery blade design and analysis. Compared with the inviscid solver, the N.S.
文摘Based on the standard k-ε turbulence model, a new compressible k-ε model considering the pressure expansion influence due to the compressibility of fluid is developed and applied to the simulation of 3D transonic turbulent flows in a nozzle and a cascade. The Reynolds avenged N-S equations in generalized curvilinear coordinates are solved with implementation of the new model. The high resolution TVD scheme is used to discretize the convective terms. The numerical results show that the compressible k-ε model behaves well in the simulation of transonic internal turbulent flows.
基金This work is partially supported from the National Sciences and Engineering Research Council(NSERC)of Canada Discovery Grant RGPIN48158 awarded to M.Hasan of McGill University,Montreal,for which the authors are grateful.
文摘A 3-D model based on the Reynolds equations with closed k-ε turbulence model is presented in this paper,which can be used to predict surface water flow in open channels.In- stead of the“rigid lid”approximation,the solution of the free surface equation is implemented in the velocity-pressure iterative procedure on the basis of the conventional SIMPLE method.This model was used to compute the flow in rectangular channels with trenches dredged across the bot- tom.The velocity,eddy viscosity coefficient,turbulent shear stress,turbulent kinetic energy and elevation of the free surface over the trenches dredged in the main channel,can be obtained. The computed results are in good agreement with existing experimentaing data.