Two novel ultrasound imaging techniques with imaging contrast mechanisms are in the works:X-ray-induced acoustic computed tomography(XACT),and nanoscale photoacoustic tomogra-phy(nPAT).XACT has incredible potential in...Two novel ultrasound imaging techniques with imaging contrast mechanisms are in the works:X-ray-induced acoustic computed tomography(XACT),and nanoscale photoacoustic tomogra-phy(nPAT).XACT has incredible potential in:(1)biomedical imaging,through which a 3D image can be generated using only a single X-ray projection,and(2)radiation dosimetry.nPATas a new alternative of super-resolution microscopy can break through the optical difraction limitand is capable of exploring sub-celular structures without reliance on fuorescence labeling.We expect these new imaging techniques to find widespread applications in both pre-clinical andclinical biomedical research.展开更多
Computational imaging describes the whole imaging process from the perspective of light transport and information transmission, features traditional optical computing capabilities, and assists in breaking through the ...Computational imaging describes the whole imaging process from the perspective of light transport and information transmission, features traditional optical computing capabilities, and assists in breaking through the limitations of visual information recording. Progress in computational imaging promotes the development of diverse basic and applied disciplines. In this review, we provide an overview of the fundamental principles and methods in computational imaging, the history of this field, and the important roles that it plays in the development of science. We review the most recent and promising advances in computational imaging, from the perspective of different dimensions of visual signals, including spatial dimension, temporal dimension, angular dimension, spectral dimension, and phase. We also discuss some topics worth studying for future developments in computational imaging.展开更多
The eukaryotic genome is folded into higher-order conformation accompanied with constrained dynamics for coordinated genome functions.However,the molecular machinery underlying these hierarchically organized three-dim...The eukaryotic genome is folded into higher-order conformation accompanied with constrained dynamics for coordinated genome functions.However,the molecular machinery underlying these hierarchically organized three-dimensional(3D)chromatin architecture and dynamics remains poorly understood.Here by combining imaging and sequencing,we studied the role of lamin B1 in chromatin architecture and dynamics.We found that lamin B1 depletion leads to detachment of lamina-associated domains(LADs)from the nuclear periphery accompanied with global chromatin redistribution and decompaction.Consequently,the interchromosomal as well as inter-compartment interactions are increased,but the structure of topologically associating domains(TADs)is not affected.Using live-cell genomic loci tracking,we further proved that depletion of lamin B1 leads to increased chromatin dynamics,owing to chromatin decompaction and redistribution toward nucleoplasm.Taken together,our data suggest that lamin B1 and chromatin interactions at the nuclear periphery promote LAD maintenance,chromatin compaction,genomic compartmentalization into chromosome territories and A/B compartments and confine chromatin dynamics,supporting their crucial roles in chromatin higher-order structure and chromatin dynamics.展开更多
文摘Two novel ultrasound imaging techniques with imaging contrast mechanisms are in the works:X-ray-induced acoustic computed tomography(XACT),and nanoscale photoacoustic tomogra-phy(nPAT).XACT has incredible potential in:(1)biomedical imaging,through which a 3D image can be generated using only a single X-ray projection,and(2)radiation dosimetry.nPATas a new alternative of super-resolution microscopy can break through the optical difraction limitand is capable of exploring sub-celular structures without reliance on fuorescence labeling.We expect these new imaging techniques to find widespread applications in both pre-clinical andclinical biomedical research.
基金Project supported by the National Natural Science Foundation of China (Nos. 61327902 and 61631009)
文摘Computational imaging describes the whole imaging process from the perspective of light transport and information transmission, features traditional optical computing capabilities, and assists in breaking through the limitations of visual information recording. Progress in computational imaging promotes the development of diverse basic and applied disciplines. In this review, we provide an overview of the fundamental principles and methods in computational imaging, the history of this field, and the important roles that it plays in the development of science. We review the most recent and promising advances in computational imaging, from the perspective of different dimensions of visual signals, including spatial dimension, temporal dimension, angular dimension, spectral dimension, and phase. We also discuss some topics worth studying for future developments in computational imaging.
基金This work is supported by grants from National Key R&D Program of China,No.2017YFA0505302the National Science Foundation of China 21573013,21825401 for Y.S.+1 种基金Chinese National Key Projects of Research and Development,No.2016YFA0100103,Peking-Tsinghua Center for Life SciencesNational Natural Science Foundation of China Key Research Grant 31871266 for C.L。
文摘The eukaryotic genome is folded into higher-order conformation accompanied with constrained dynamics for coordinated genome functions.However,the molecular machinery underlying these hierarchically organized three-dimensional(3D)chromatin architecture and dynamics remains poorly understood.Here by combining imaging and sequencing,we studied the role of lamin B1 in chromatin architecture and dynamics.We found that lamin B1 depletion leads to detachment of lamina-associated domains(LADs)from the nuclear periphery accompanied with global chromatin redistribution and decompaction.Consequently,the interchromosomal as well as inter-compartment interactions are increased,but the structure of topologically associating domains(TADs)is not affected.Using live-cell genomic loci tracking,we further proved that depletion of lamin B1 leads to increased chromatin dynamics,owing to chromatin decompaction and redistribution toward nucleoplasm.Taken together,our data suggest that lamin B1 and chromatin interactions at the nuclear periphery promote LAD maintenance,chromatin compaction,genomic compartmentalization into chromosome territories and A/B compartments and confine chromatin dynamics,supporting their crucial roles in chromatin higher-order structure and chromatin dynamics.