The use of support vector machines (SVM) for watermarking of 3D mesh models is investigated. SVMs have been widely explored for images, audio, and video watermarking but to date the potential of SVMs has not been ex...The use of support vector machines (SVM) for watermarking of 3D mesh models is investigated. SVMs have been widely explored for images, audio, and video watermarking but to date the potential of SVMs has not been explored in the 3D watermarking domain. The proposed approach utilizes SVM as a binary classifier for the selection of vertices for watermark embedding. The SVM is trained with feature vectors derived from the angular difference between the eigen normal and surface normals of a 1-ring neighborhood of vertices taken from normalized 3D mesh models. The SVM learns to classify vertices as appropriate or inappropriate candidates for modification in order to accommodate the watermark. Experimental results verify that the proposed algorithm is imperceptible and robust against attacks such as mesh smoothing, cropping and noise addition.展开更多
文摘The use of support vector machines (SVM) for watermarking of 3D mesh models is investigated. SVMs have been widely explored for images, audio, and video watermarking but to date the potential of SVMs has not been explored in the 3D watermarking domain. The proposed approach utilizes SVM as a binary classifier for the selection of vertices for watermark embedding. The SVM is trained with feature vectors derived from the angular difference between the eigen normal and surface normals of a 1-ring neighborhood of vertices taken from normalized 3D mesh models. The SVM learns to classify vertices as appropriate or inappropriate candidates for modification in order to accommodate the watermark. Experimental results verify that the proposed algorithm is imperceptible and robust against attacks such as mesh smoothing, cropping and noise addition.