Helical hierarchy found in biomolecules like cellulose,chitin,and collagen underpins the remarkable mechanical strength and vibrant colors observed in living organisms.This study advances the integration of helical/ch...Helical hierarchy found in biomolecules like cellulose,chitin,and collagen underpins the remarkable mechanical strength and vibrant colors observed in living organisms.This study advances the integration of helical/chiral assembly and 3D printing technology,providing precise spatial control over chiral nano/microstructures of rod-shaped colloidal nanoparticles in intricate geometries.We designed reactive chiral inks based on cellulose nanocrystal(CNC)suspensions and acrylamide monomers,enabling the chiral assembly at nano/microscale,beyond the resolution seen in printed materials.We employed a range of complementary techniques including Orthogonal Superposition rheometry and in situ rheo-optic measurements under steady shear rate conditions.These techniques help us to understand the nature of the nonlinear flow behavior of the chiral inks,and directly probe the flow-induced microstructural dynamics and phase transitions at constant shear rates,as well as their post-flow relaxation.Furthermore,we analyzed the photo-curing process to identify key parameters affecting gelation kinetics and structural integrity of the printed object within the supporting bath.These insights into the interplay between the chiral inks self-assembly dynamics,3D printing flow kinematics and photopolymerization kinetics provide a roadmap to direct the out-of-equilibrium arrangement of CNC particles in the 3D printed filaments,ranging from uniform nematic to 3D concentric chiral structures with controlled pitch length,as well as random orientation of chiral domains.Our biomimetic approach can pave the way for the creation of materials with superior mechanical properties or programable photonic responses that arise from 3D nano/microstructure and can be translated into larger scale 3D printed designs.展开更多
Electromagnetic interference shielding(EMI SE)modules are the core com-ponent of modern electronics.However,the tra-ditional metal-based SE modules always take up indispensable three-dimensional space inside electroni...Electromagnetic interference shielding(EMI SE)modules are the core com-ponent of modern electronics.However,the tra-ditional metal-based SE modules always take up indispensable three-dimensional space inside electronics,posing a major obstacle to the integra-tion of electronics.The innovation of integrating 3D-printed conformal shielding(c-SE)modules with packaging materials onto core electronics offers infinite possibilities to satisfy ideal SE func-tion without occupying additional space.Herein,the 3D printable carbon-based inks with various proportions of graphene and carbon nanotube nanoparticles are well-formulated by manipulating their rheological peculiarity.Accordingly,the free-constructed architectures with arbitrarily-customized structure and multifunctionality are created via 3D printing.In particular,the SE performance of 3D-printed frame is up to 61.4 dB,simultaneously accompanied with an ultralight architecture of 0.076 g cm^(-3) and a superhigh specific shielding of 802.4 dB cm3 g^(-1).Moreover,as a proof-of-concept,the 3D-printed c-SE module is in situ integrated into core electronics,successfully replacing the traditional metal-based module to afford multiple functions for electromagnetic compatibility and thermal dissipa-tion.Thus,this scientific innovation completely makes up the blank for assembling carbon-based c-SE modules and sheds a brilliant light on developing the next generation of high-performance shielding materials with arbitrarily-customized structure for integrated electronics.展开更多
Tissue engineering(TE)continues to be widely explored as a potential solution to meet critical clinical needs for diseased tissue replacement and tissue regeneration.In this study,we developed a poly(2-hydroxyethyl me...Tissue engineering(TE)continues to be widely explored as a potential solution to meet critical clinical needs for diseased tissue replacement and tissue regeneration.In this study,we developed a poly(2-hydroxyethyl methacrylate-co-methacrylic acid)(pHEMA-co-MAA)based hydrogel loaded with newly synthesized conductive poly(3,4-ethylene-dioxythiophene)(PEDOT)and polypyrrole(PPy)nanoparticles(NPs),and subsequently processed these hydrogels into tissue engineered constructs via three-dimensional(3D)printing.The presence of the NPs was critical as they altered the rheological properties during printing.However,all samples exhibited suitable shear thinning properties,allowing for the development of an optimized processing window for 3D printing.Samples were 3D printed into pre-determined disk-shaped configurations of 2 and 10 mm in height and diameter,respectively.We observed that the NPs disrupted the gel crosslinking efficiencies,leading to shorter degradation times and compressive mechanical properties ranging between 450 and 550 kPa.The conductivity of the printed hydrogels increased along with the NP concentration to(5.10±0.37)×10^(−7)S/cm.In vitro studies with cortical astrocyte cell cultures demonstrated that exposure to the pHEMA-co-MAA NP hydrogels yielded high cellular viability and proliferation rates.Finally,hydrogel antimicrobial studies with staphylococcus epidermidis bacteria revealed that the developed hydrogels affected bacterial growth.Taken together,these materials show promise for various TE strategies.展开更多
Three-dimensional(3D)printing is a highly automated platform that facilitates material deposition in a layer-by-layer approach to fabricate pre-defined 3D complex structures on demand.It is a highly promising techniqu...Three-dimensional(3D)printing is a highly automated platform that facilitates material deposition in a layer-by-layer approach to fabricate pre-defined 3D complex structures on demand.It is a highly promising technique for the fabrication of personalized medical devices or even patient-specific tissue constructs.Each type of 3D printing technique has its unique advantages and limitations,and the selection of a suitable 3D printing technique is highly dependent on its intended application.In this review paper,we present and highlight some of the critical processes(printing parameters,build orientation,build location,and support structures),material(batch-to-batch consistency,recycling,protein adsorption,biocompatibility,and degradation properties),and regulatory considerations(sterility and mechanical properties)for 3D printing of personalized medical devices.The goal of this review paper is to provide the readers with a good understanding of the various key considerations(process,material,and regulatory)in 3D printing,which are critical for the fabrication of improved patient-specific 3D printed medical devices and tissue constructs.展开更多
In bone tissue engineering,polycaprolactone(PCL)is a promising material with good biocompatibility,but its poor degradation rate,mechanical strength,and osteogenic properties limit its application.In this study,we dev...In bone tissue engineering,polycaprolactone(PCL)is a promising material with good biocompatibility,but its poor degradation rate,mechanical strength,and osteogenic properties limit its application.In this study,we developed an Mg-1Ca/polycaprolactone(Mg-1Ca/PCL)composite scaffolds to overcome these limitations.We used a melt blending method to prepare Mg-1Ca/PCL composites with Mg-1Ca alloy powder mass ratios of 5,10,and 20 wt%.Porous scaffolds with controlled macro-and microstructure were printed using the fused deposition modeling method.We explored the mechanical strength,biocompatibility,osteogenesis performance,and molecular mechanism of the Mg-1Ca/PCL composites.The 5 and 10 wt%Mg-1Ca/PCL composites were found to have good biocompatibility.Moreover,they promoted the mechanical strength,proliferation,adhesion,and osteogenic differentiation of human bone marrow stem cells(hBMSCs)of pure PCL.In vitro degradation experiments revealed that the composite material stably released Mg_(2)+ions for a long period;it formed an apatite layer on the surface of the scaffold that facilitated cell adhesion and growth.Microcomputed tomography and histological analysis showed that both 5 and 10 wt%Mg-1Ca/PCL composite scaffolds promoted bone regeneration bone defects.Our results indicated that the Wnt/β-catenin pathway was involved in the osteogenic effect.Therefore,Mg-1Ca/PCL composite scaffolds are expected to be a promising bone regeneration material for clinical application.Statement of significance:Bone tissue engineering scaffolds have promising applications in the regeneration of critical-sized bone defects.However,there remain many limitations in the materials and manufacturing methods used to fabricate scaffolds.This study shows that the developed Ma-1Ca/PCL composites provides scaffolds with suitable degradation rates and enhanced boneformation capabilities.Furthermore,the fused deposition modeling method allows precise control of the macroscopic morphology and microscopic porosity of the scaffold.The obtained porous scaffolds can significantly promote the regeneration of bone defects.展开更多
Metal-organic framework(MOF)and covalent organic framework(COF)are a huge group of advanced porous materials exhibiting attractive and tunable microstructural features,such as large surface area,tunable pore size,and ...Metal-organic framework(MOF)and covalent organic framework(COF)are a huge group of advanced porous materials exhibiting attractive and tunable microstructural features,such as large surface area,tunable pore size,and functional surfaces,which have significant values in various application areas.The emerging 3D printing technology further provides MOF and COFs(M/COFs)with higher designability of their macrostructure and demonstrates large achievements in their performance by shaping them into advanced 3D monoliths.However,the currently available 3D printing M/COFs strategy faces a major challenge of severe destruction of M/COFs’microstructural features,both during and after 3D printing.It is envisioned that preserving the microstructure of M/COFs in the 3D-printed monolith will bring a great improvement to the related applications.In this overview,the 3D-printed M/COFs are categorized into M/COF-mixed monoliths and M/COF-covered monoliths.Their differences in the properties,applications,and current research states are discussed.The up-to-date advancements in paste/scaffold composition and printing/covering methods to preserve the superior M/COF microstructure during 3D printing are further discussed for the two types of 3D-printed M/COF.Throughout the analysis of the current states of 3D-printed M/COFs,the expected future research direction to achieve a highly preserved microstructure in the 3D monolith is proposed.展开更多
Sodium alginate(SA)/chitosan(CH)polyelectrolyte scaffold is a suitable substrate for tissue-engineering application.The present study deals with further improvement in the tensile strength and biological properties of...Sodium alginate(SA)/chitosan(CH)polyelectrolyte scaffold is a suitable substrate for tissue-engineering application.The present study deals with further improvement in the tensile strength and biological properties of this type of scaffold to make it a potential template for bone-tissue regeneration.We experimented with adding 0%–15%(volume fraction)gelatin(GE),a protein-based biopolymer known to promote cell adhesion,proliferation,and differentiation.The resulting tri-polymer complex was used as bioink to fabricate SA/CH/GEmatrices by three-dimensional(3D)printing.Morphological studies using scanning electron microscopy revealed the microfibrous porous architecture of all the structures,which had a pore size range of 383–419μm.X-ray diffraction and Fourier-transform infrared spectroscopy analyses revealed the amorphous nature of the scaffold and the strong electrostatic interactions among the functional groups of the polymers,thereby forming polyelectrolyte complexes which were found to improve mechanical properties and structural stability.The scaffolds exhibited a desirable degradation rate,controlled swelling,and hydrophilic characteristics which are favorable for bone-tissue engineering.The tensile strength improved from(386±15)to(693±15)kPa due to the increased stiffness of SA/CH scaffolds upon addition of gelatin.The enhanced protein adsorption and in vitro bioactivity(forming an apatite layer)confirmed the ability of the SA/CH/GE scaffold to offer higher cellular adhesion and a bone-like environment to cells during the process of tissue regeneration.In vitro biological evaluation including the MTT assay,confocal microscopy analysis,and alizarin red S assay showed a significant increase in cell attachment,cell viability,and cell proliferation,which further improved biomineralization over the scaffold surface.In addition,SA/CH containing 15%gelatin designated as SA/CH/GE15 showed superior performance to the other fabricated 3D structures,demonstrating its potential for use in bone-tissue engineering.展开更多
The rapid advancement in the miniaturization,integration,and intelligence of electronic devices has escalated the demand for customizable microsupercapacitors(MSCs)with high energy density.However,efficient microfabri...The rapid advancement in the miniaturization,integration,and intelligence of electronic devices has escalated the demand for customizable microsupercapacitors(MSCs)with high energy density.However,efficient microfabrication of safe and high‐energy MXene MSCs for integrating microelectronics remains a significant challenge due to the low voltage window in aqueous electrolytes(typically≤0.6 V)and limited areal mass loading of MXene microelectrodes.Here,we tackle these challenges by developing a highconcentration(18mol kg^(−1))“water‐in‐LiBr”(WiB)gel electrolyte for MXene symmetric MSCs(M‐SMSCs),demonstrating a record high voltage window of 1.8 V.Subsequently,additive‐free aqueous MXene ink with excellent rheological behavior is developed for three‐dimensional(3D)printing customizable all‐MXene microelectrodes on various substrates.Leveraging the synergy of a highvoltage WiB gel electrolyte and 3D‐printed microelectrodes,quasi‐solid‐state MSMSCs operating stably at 1.8 V are constructed,and achieve an ultrahigh areal energy density of 1772μWhcm^(−2)and excellent low‐temperature tolerance,with a long‐term operation at−40℃.Finally,by extending the 3D printing protocol,M‐SMSCs are integrated with humidity sensors on a single planar substrate,demonstrating their reliability in miniaturized integrated microsystems.展开更多
Synthetic vascular grafts suitable for small-diameter arteries(<6 mm) are in great need.However,there are still no commercially available small-diameter vascular grafts(SDVGs) in clinical practice due to thrombosis...Synthetic vascular grafts suitable for small-diameter arteries(<6 mm) are in great need.However,there are still no commercially available small-diameter vascular grafts(SDVGs) in clinical practice due to thrombosis and stenosis after in vivo implantation.When designing SDVGs,many studies emphasized reendothelization but ignored the importance of reconstruction of the smooth muscle layer(SML).To facilitate rapid SML regeneration,a high-resolution 3D printing method was used to create a novel bilayer SDVG with structures and mechanical properties mimicking natural arteries.Bioinspired by the collagen alignment of SML,the inner layer of the grafts had larger pore sizes and high porosity to accelerate the infiltration of cells and their circumferential alignment,which could facilitate SML reconstruction for compliance restoration and spontaneous endothelialization.The outer layer was designed to induce fibroblast recruitment by low porosity and minor pore size and provide SDVG with sufficient mechanical strength.One month after implantation,the arteries regenerated by 3D-printed grafts exhibited better pulsatility than electrospun grafts,with a compliance(8.9%) approaching that of natural arteries(11.36%) and significantly higher than that of electrospun ones(1.9%).The 3D-printed vascular demonstrated a three-layer structure more closely resembling natural arteries while electrospun grafts showed incomplete endothelium and immature SML.Our study shows the importance of SML reconstruction during vascular graft regeneration and provides an effective strategy to reconstruct blood vessels through 3D-printed structures rapidly.展开更多
Honeycomb sandwich structures are widely used in lightweight applications.Usually,these structures are subjected to extreme loading conditions,leading to potential failures due to delamination and debonding between th...Honeycomb sandwich structures are widely used in lightweight applications.Usually,these structures are subjected to extreme loading conditions,leading to potential failures due to delamination and debonding between the face sheet and the honeycomb core.Therefore,the present study is focused on the mechanical characterisation of honeycomb sandwich structures fabricated using advanced 3D printing technology.The continuous carbon fibres and ONYX-FR matrix materials have been used as raw materials for 3D printing of the specimens needed for various mechanical characterization testing;ONYX-FR is a commercial trade name for flame retardant short carbon fibre filled nylon filaments,used as a reinforcing material in Morkforged 3D printer.Edgewise and flatwise compression tests have been conducted for different configurations of honeycomb sandwich structures,fabricated by varying the face sheet thickness and core cell size,while keeping the core cell thickness and core height constant.Based on these tests,the proposed structure with face sheet thickness of 3.2 mm and a core cell size of 12.7 mm exhibited the highest energy absorption and prevented delamination and debonding failures.Therefore,3D printing technology can also be considered as an alternative method for sandwich structure fabrication.However,detailed parametric studies still need to be conducted to meet various other structural integrity criteria related to the lightweight applications.展开更多
Based on the building principle of additive manufacturing,printing orientation mainly determines the tribological properties of joint prostheses.In this study,we created a polyether-ether-ketone(PEEK)joint prosthesis ...Based on the building principle of additive manufacturing,printing orientation mainly determines the tribological properties of joint prostheses.In this study,we created a polyether-ether-ketone(PEEK)joint prosthesis using fused filament fabrication and investigated the effects of printing orientation on its tribological properties using a pin-on-plate tribometer in 25% newborn calf serum.An ultrahigh molecular weight polyethylene transfer film is formed on the surface of PEEK due to the mechanical capture of wear debris by the 3D-printed groove morphology,which is significantly impacted by the printing orientation of PEEK.When the printing orientation was parallel to the sliding direction of friction,the number and size of the transfer film increased due to higher steady stress.This transfer film protected the matrix and reduced the friction coefficient and wear rate of friction pairs by 39.13%and 74.33%,respectively.Furthermore,our findings provide a novel perspective regarding the role of printing orientation in designing knee prostheses,facilitating its practical applications.展开更多
Nerve regeneration holds significant potential in the treatment of various skeletal and neurological disorders to restore lost sensory and motor functions.The potential of nerve regeneration in ameliorating neurologic...Nerve regeneration holds significant potential in the treatment of various skeletal and neurological disorders to restore lost sensory and motor functions.The potential of nerve regeneration in ameliorating neurological diseases and injuries is critical to human health.Three-dimensional(3D)printing offers versatility and precision in the fabrication of neural scaffolds.Complex neural structures such as neural tubes and scaffolds can be fabricated via 3Dprinting.This reviewcomprehensively analyzes the current state of 3D-printed neural scaffolds and explores strategies to enhance their design.It highlights therapeutic strategies and structural design involving neural materials and stem cells.First,nerve regeneration materials and their fabrication techniques are outlined.The applications of conductive materials in neural scaffolds are reviewed,and their potential to facilitate neural signal transmission and regeneration is highlighted.Second,the progress in 3D-printed neural scaffolds applied to the peripheral and central nerves is comprehensively evaluated,and their potential to restore neural function and promote the recovery of different nervous systems is emphasized.In addition,various applications of 3D-printed neural scaffolds in peripheral and neurological diseases,as well as the design strategies of multifunctional biomimetic scaffolds,are discussed.展开更多
The novelty of this research lies in the successful fabrication of a 3D-printed honeycomb structure filled with nanofillers for acoustic properties,utilizing an impedance tube setup in accordance with ASTM standard E ...The novelty of this research lies in the successful fabrication of a 3D-printed honeycomb structure filled with nanofillers for acoustic properties,utilizing an impedance tube setup in accordance with ASTM standard E 1050-12.The Creality Ender-3,a 3D printer,was used for printing the honeycomb structures,and polylactic acid(PLA)material was employed for their construction.The organic,inorganic,and polymeric compounds within the composites were identified using fourier transformation infrared(FTIR)spectroscopy.The structure and homogeneity of the samples were examined using a field emission scanning electron microscope(FESEM).To determine the sound absorption coefficient of the 3D printed honeycomb structure,numerous samples were systematically developed using central composite design(CCD)and analysed using response surface methodology(RSM).The RSM mathematical model was established to predict the optimum values of each factor and noise reduction coefficient(NRC).The optimum values for an NRC of 0.377 were found to be 1.116 wt% carbon black,1.025 wt% aluminium powder,and 3.151 mm distance between parallel edges.Overall,the results demonstrate that a 3Dprinted honeycomb structure filled with nanofillers is an excellent material that can be utilized in various fields,including defence and aviation,where lightweight and acoustic properties are of great importance.展开更多
The important supporting component in a gas turbine is the casing,which has the characteristics of large size,complex structure,and thin wall.In the context of existing 3DP sand casting processes,casting crack defects...The important supporting component in a gas turbine is the casing,which has the characteristics of large size,complex structure,and thin wall.In the context of existing 3DP sand casting processes,casting crack defects are prone to occur.This leads to an increase in the scrap rate of casings,causing significant resource wastage.Additionally,the presence of cracks poses a significant safety hazard after the casings are put into service.The generation of different types of crack defects in stainless steel casings is closely related to casting stress and the high-temperature concession of the sand mold.Therefore,the types and causes of cracks in stainless steel casing products,based on their structural characteristics,were systematically analyzed.Various sand molds with different internal topology designs were printed using the 3DP technology to investigate the impact of sand mold structures on high-temperature concession.The optimal sand mold structure was used to cast casings,and the crack suppression effect was verified by analyzing its eddy current testing results.The experimental results indicate that the skeleton structure has an excellent effect on suppressing cracks in the casing.This research holds important theoretical and engineering significance in improving the quality of casing castings and reducing production costs.展开更多
Esophageal disease is a common disorder of the digestive system that can severely affect the quality of life andprognosis of patients. Esophageal stenting is an effective treatment that has been widely used in clinica...Esophageal disease is a common disorder of the digestive system that can severely affect the quality of life andprognosis of patients. Esophageal stenting is an effective treatment that has been widely used in clinical practice.However, esophageal stents of different types and parameters have varying adaptability and effectiveness forpatients, and they need to be individually selected according to the patient’s specific situation. The purposeof this study was to provide a reference for clinical doctors to choose suitable esophageal stents. We used 3Dprinting technology to fabricate esophageal stents with different ratios of thermoplastic polyurethane (TPU)/(Poly-ε-caprolactone) PCL polymer, and established an artificial neural network model that could predict the radial forceof esophageal stents based on the content of TPU, PCL and print parameter. We selected three optimal ratios formechanical performance tests and evaluated the biomechanical effects of different ratios of stents on esophagealimplantation, swallowing, and stent migration processes through finite element numerical simulation and in vitrosimulation tests. The results showed that different ratios of polymer stents had different mechanical properties,affecting the effectiveness of stent expansion treatment and the possibility of postoperative complications of stentimplantation.展开更多
Dose-dense chemotherapy is the preferred first-line therapy for triple-negative breast cancer(TNBC),a highly aggressive disease with a poor prognosis.This treatment uses the same drug doses as conventional chemotherap...Dose-dense chemotherapy is the preferred first-line therapy for triple-negative breast cancer(TNBC),a highly aggressive disease with a poor prognosis.This treatment uses the same drug doses as conventional chemotherapy but with shorter dosing intervals,allowing for promising clinical outcomes with intensive treatment.However,the frequent systemic administration used for this treatment results in systemic toxicity and low patient compliance,limiting therapeutic efficacy and clinical benefit.Here,we report local dose-dense chemotherapy to treat TNBC by implanting 3D printed devices with timeprogrammed pulsatile release profiles.The implantable device can control the time between drug releases based on its internal microstructure design,which can be used to control dose density.The device is made of biodegradable materials for clinical convenience and designed for minimally invasive implantation via a trocar.Dose density variation of local chemotherapy using programmable release enhances anti-cancer effects in vitro and in vivo.Under the same dose density conditions,device-based chemotherapy shows a higher anticancer effect and less toxic response than intratumoral injection.We demonstrate local chemotherapy utilizing the implantable device that simulates the drug dose,number of releases,and treatment duration of the dose-dense AC(doxorubicin and cyclophosphamide)regimen preferred for TNBC treatment.Dose density modulation inhibits tumor growth,metastasis,and the expression of drug resistance-related proteins,including p-glycoprotein and breast cancer resistance protein.To the best of our knowledge,local dose-dense chemotherapy has not been reported,and our strategy can be expected to be utilized as a novel alternative to conventional therapies and improve anti-cancer efficiency.展开更多
In the intricate skeletal muscle tissue,the symbiotic relationship between myotubes and their supporting vasculature is pivotal in delivering essential oxygen and nutrients.This study explored the complex interplay be...In the intricate skeletal muscle tissue,the symbiotic relationship between myotubes and their supporting vasculature is pivotal in delivering essential oxygen and nutrients.This study explored the complex interplay between skeletal muscle and endothelial cells in the vascularization ofmuscle tissue.By harnessing the capabilities of three-dimensional(3D)bioprinting and modeling,we developed a novel approach involving the co-construction of endothelial and muscle cells,followed by their subsequent differentiation.Our findings highlight the importance of the interaction dynamics between these two cell types.Notably,introducing endothelial cells during the advanced phases of muscle differentiation enhanced myotube assembly.Moreover,it stimulated the development of the vascular network,paving the way for the early stages of vascularized skeletal muscle development.The methodology proposed in this study indicates the potential for constructing large-scale,physiologically aligned skeletal muscle.Additionally,it highlights the need for exploring the delicate equilibrium and mutual interactions between muscle and endothelial cells.Based on the multicell-type interaction model,we can predict promising pathways for constructing even more intricate tissues or organs.展开更多
Objective:To analyze the effectiveness of personalized 3D-printed rehabilitation orthotics in the postoperative recovery of jaw fractures.Methods:Relevant data were collected from 42 patients with jaw fractures treate...Objective:To analyze the effectiveness of personalized 3D-printed rehabilitation orthotics in the postoperative recovery of jaw fractures.Methods:Relevant data were collected from 42 patients with jaw fractures treated at our hospital between October 2017 and May 2020.Patients were randomly divided into a traditional group(n=17)and a modified group(n=25).The traditional group received standard rehabilitation methods,while the modified group used personalized 3D-printed rehabilitation orthotics combined with improved rehabilitation methods.The temporomandibular disability index(TDI),quality of life scores,postoperative recovery excellence rate,and mouth opening were compared between the two groups at different follow-up times(before rehabilitation,and at 1 week,3 months,and 6 months post-surgery).Results:At 1 week,3 months,and 6 months post-surgery,the TDI in both the traditional and modified groups was significantly lower than before rehabilitation,with statistically significant differences(P<0.05).At 3 and 6 months post-surgery,the TDI in the modified group was lower than in the traditional group,with statistically significant differences(P<0.05).At 3 and 6 months post-surgery,pain,appearance,activity,recreation,work,chewing,swallowing,speech,shoulder function,and total quality of life scores in both groups were higher than before rehabilitation,with the modified group showing significantly higher scores in pain,appearance,chewing,swallowing,and total quality of life(P<0.05).Compared to before rehabilitation,mouth opening significantly improved in both groups at 3 and 6 months post-surgery,with the modified group showing significantly greater improvement(P<0.05).Conclusion:Personalized 3D-printed rehabilitation orthotics are highly effective in the postoperative recovery of jaw fractures.They can improve patients’quality of life after surgery,enhance the excellent rate of postoperative recovery,and increase mouth opening.展开更多
The tireless pursuit of supercapacitors with high energy density entails the parallel advancement of wellsuited electrode materials and elaborately engineered architectures.Polypyrrole(PPy)emerges as an exceedingly co...The tireless pursuit of supercapacitors with high energy density entails the parallel advancement of wellsuited electrode materials and elaborately engineered architectures.Polypyrrole(PPy)emerges as an exceedingly conductive polymer and a prospective pseudocapacitive materials for supercapacitors,yet the inferior cyclic stability and unpredictable polymerization patterns severely impede its real-world applicability.Here,for the first time,an innovative seed-induced in-situ polymerization assisted 3D printing strategy is proposed to fabricate PPy-reduced graphene oxide/poly(vinylidene difluoride-cohexafluoropropylene)(PVDF-HFP)(PPy-rGO/PH)electrodes with controllable polymerization behavior and exceptional areal mass loading.The preferred active sites uniformly pre-planted on the 3D-printed graphene substrates serve as reliable seeds to induce efficient polypyrrole deposition,achieving an impressive mass loading of 185.6 mg cm^(-2)(particularly 79.2 mg cm^(-2)for polypyrrole)and a superior areal capacitance of 25.2 F cm^(-2)at 2 mA cm^(-2)for a 12-layer electrode.In agreement with theses appealing features,an unprecedented areal energy density of 1.47 mW h cm^(-2)for a symmetrical device is registered,a rarely achieved value for other PPy/rGO-based supercapacitors.This work highlights a promising route to preparing high energy density energy storage modules for real-world applications.展开更多
Miniature devices comprising stimulus-responsive hydrogels with high environmental adaptability are now considered competitive candidates in the fields of biomedicine,precise sensors,and tunable optics.Reliable and ad...Miniature devices comprising stimulus-responsive hydrogels with high environmental adaptability are now considered competitive candidates in the fields of biomedicine,precise sensors,and tunable optics.Reliable and advanced fabricationmethods are critical formaximizing the application capabilities ofminiature devices.Light-based three-dimensional(3D)printing technology offers the advantages of a wide range of applicable materials,high processing accuracy,and strong 3D fabrication capability,which is suitable for the development of miniature devices with various functions.This paper summarizes and highlights the recent advances in light-based 3D-printed miniaturized devices,with a focus on the latest breakthroughs in lightbased fabrication technologies,smart stimulus-responsive hydrogels,and tunable miniature devices for the fields of miniature cargo manipulation,targeted drug and cell delivery,active scaffolds,environmental sensing,and optical imaging.Finally,the challenges in the transition of tunable miniaturized devices from the laboratory to practical engineering applications are presented.Future opportunities that will promote the development of tunable microdevices are elaborated,contributing to their improved understanding of these miniature devices and further realizing their practical applications in various fields.展开更多
基金the support from the University of South Carolina
文摘Helical hierarchy found in biomolecules like cellulose,chitin,and collagen underpins the remarkable mechanical strength and vibrant colors observed in living organisms.This study advances the integration of helical/chiral assembly and 3D printing technology,providing precise spatial control over chiral nano/microstructures of rod-shaped colloidal nanoparticles in intricate geometries.We designed reactive chiral inks based on cellulose nanocrystal(CNC)suspensions and acrylamide monomers,enabling the chiral assembly at nano/microscale,beyond the resolution seen in printed materials.We employed a range of complementary techniques including Orthogonal Superposition rheometry and in situ rheo-optic measurements under steady shear rate conditions.These techniques help us to understand the nature of the nonlinear flow behavior of the chiral inks,and directly probe the flow-induced microstructural dynamics and phase transitions at constant shear rates,as well as their post-flow relaxation.Furthermore,we analyzed the photo-curing process to identify key parameters affecting gelation kinetics and structural integrity of the printed object within the supporting bath.These insights into the interplay between the chiral inks self-assembly dynamics,3D printing flow kinematics and photopolymerization kinetics provide a roadmap to direct the out-of-equilibrium arrangement of CNC particles in the 3D printed filaments,ranging from uniform nematic to 3D concentric chiral structures with controlled pitch length,as well as random orientation of chiral domains.Our biomimetic approach can pave the way for the creation of materials with superior mechanical properties or programable photonic responses that arise from 3D nano/microstructure and can be translated into larger scale 3D printed designs.
基金This work is financially supported by the National Natural Science Foundation of China(52303036)the Natural Science Foundation of Guangxi Province(2020GXNSFAA297028)+4 种基金the Guangxi Science and Technology Base and Talent Special Project(GUIKE AD23026179)the International Science&Technology Cooperation Project of Chengdu(2021-GH03-00009-HZ)the Program of Innovative Research Team for Young Scientists of Sichuan Province(22CXTD0019)the Natural Science Foundation of Sichuan Province(2023NSFSC0986)the Opening Project of State Key Laboratory of Polymer Materials Engineering(Sichuan University)(Sklpme2023-3-18).
文摘Electromagnetic interference shielding(EMI SE)modules are the core com-ponent of modern electronics.However,the tra-ditional metal-based SE modules always take up indispensable three-dimensional space inside electronics,posing a major obstacle to the integra-tion of electronics.The innovation of integrating 3D-printed conformal shielding(c-SE)modules with packaging materials onto core electronics offers infinite possibilities to satisfy ideal SE func-tion without occupying additional space.Herein,the 3D printable carbon-based inks with various proportions of graphene and carbon nanotube nanoparticles are well-formulated by manipulating their rheological peculiarity.Accordingly,the free-constructed architectures with arbitrarily-customized structure and multifunctionality are created via 3D printing.In particular,the SE performance of 3D-printed frame is up to 61.4 dB,simultaneously accompanied with an ultralight architecture of 0.076 g cm^(-3) and a superhigh specific shielding of 802.4 dB cm3 g^(-1).Moreover,as a proof-of-concept,the 3D-printed c-SE module is in situ integrated into core electronics,successfully replacing the traditional metal-based module to afford multiple functions for electromagnetic compatibility and thermal dissipa-tion.Thus,this scientific innovation completely makes up the blank for assembling carbon-based c-SE modules and sheds a brilliant light on developing the next generation of high-performance shielding materials with arbitrarily-customized structure for integrated electronics.
基金research conducted with the financial support of Science Foundation Ireland under the SFI Research Infrastructure Programme (21/RI/9831)the funding provided by the Irish Research Council through the Irish Research Council Enterprise Partnership Scheme with Johnson and Johnson (EPSPG/2020/78)
文摘Tissue engineering(TE)continues to be widely explored as a potential solution to meet critical clinical needs for diseased tissue replacement and tissue regeneration.In this study,we developed a poly(2-hydroxyethyl methacrylate-co-methacrylic acid)(pHEMA-co-MAA)based hydrogel loaded with newly synthesized conductive poly(3,4-ethylene-dioxythiophene)(PEDOT)and polypyrrole(PPy)nanoparticles(NPs),and subsequently processed these hydrogels into tissue engineered constructs via three-dimensional(3D)printing.The presence of the NPs was critical as they altered the rheological properties during printing.However,all samples exhibited suitable shear thinning properties,allowing for the development of an optimized processing window for 3D printing.Samples were 3D printed into pre-determined disk-shaped configurations of 2 and 10 mm in height and diameter,respectively.We observed that the NPs disrupted the gel crosslinking efficiencies,leading to shorter degradation times and compressive mechanical properties ranging between 450 and 550 kPa.The conductivity of the printed hydrogels increased along with the NP concentration to(5.10±0.37)×10^(−7)S/cm.In vitro studies with cortical astrocyte cell cultures demonstrated that exposure to the pHEMA-co-MAA NP hydrogels yielded high cellular viability and proliferation rates.Finally,hydrogel antimicrobial studies with staphylococcus epidermidis bacteria revealed that the developed hydrogels affected bacterial growth.Taken together,these materials show promise for various TE strategies.
文摘Three-dimensional(3D)printing is a highly automated platform that facilitates material deposition in a layer-by-layer approach to fabricate pre-defined 3D complex structures on demand.It is a highly promising technique for the fabrication of personalized medical devices or even patient-specific tissue constructs.Each type of 3D printing technique has its unique advantages and limitations,and the selection of a suitable 3D printing technique is highly dependent on its intended application.In this review paper,we present and highlight some of the critical processes(printing parameters,build orientation,build location,and support structures),material(batch-to-batch consistency,recycling,protein adsorption,biocompatibility,and degradation properties),and regulatory considerations(sterility and mechanical properties)for 3D printing of personalized medical devices.The goal of this review paper is to provide the readers with a good understanding of the various key considerations(process,material,and regulatory)in 3D printing,which are critical for the fabrication of improved patient-specific 3D printed medical devices and tissue constructs.
基金supported by the National Key R&D Program of China[grant number 2021YFC2400700]the National Natural Science Foundation of China[grant numbers 82170929,81970908 and 81771039].
文摘In bone tissue engineering,polycaprolactone(PCL)is a promising material with good biocompatibility,but its poor degradation rate,mechanical strength,and osteogenic properties limit its application.In this study,we developed an Mg-1Ca/polycaprolactone(Mg-1Ca/PCL)composite scaffolds to overcome these limitations.We used a melt blending method to prepare Mg-1Ca/PCL composites with Mg-1Ca alloy powder mass ratios of 5,10,and 20 wt%.Porous scaffolds with controlled macro-and microstructure were printed using the fused deposition modeling method.We explored the mechanical strength,biocompatibility,osteogenesis performance,and molecular mechanism of the Mg-1Ca/PCL composites.The 5 and 10 wt%Mg-1Ca/PCL composites were found to have good biocompatibility.Moreover,they promoted the mechanical strength,proliferation,adhesion,and osteogenic differentiation of human bone marrow stem cells(hBMSCs)of pure PCL.In vitro degradation experiments revealed that the composite material stably released Mg_(2)+ions for a long period;it formed an apatite layer on the surface of the scaffold that facilitated cell adhesion and growth.Microcomputed tomography and histological analysis showed that both 5 and 10 wt%Mg-1Ca/PCL composite scaffolds promoted bone regeneration bone defects.Our results indicated that the Wnt/β-catenin pathway was involved in the osteogenic effect.Therefore,Mg-1Ca/PCL composite scaffolds are expected to be a promising bone regeneration material for clinical application.Statement of significance:Bone tissue engineering scaffolds have promising applications in the regeneration of critical-sized bone defects.However,there remain many limitations in the materials and manufacturing methods used to fabricate scaffolds.This study shows that the developed Ma-1Ca/PCL composites provides scaffolds with suitable degradation rates and enhanced boneformation capabilities.Furthermore,the fused deposition modeling method allows precise control of the macroscopic morphology and microscopic porosity of the scaffold.The obtained porous scaffolds can significantly promote the regeneration of bone defects.
基金the support by National Research Foundation of Singapore(NRF,Project:NRF-CRP262021RS-0002),for research conducted at the National University of Singapore(NUS)。
文摘Metal-organic framework(MOF)and covalent organic framework(COF)are a huge group of advanced porous materials exhibiting attractive and tunable microstructural features,such as large surface area,tunable pore size,and functional surfaces,which have significant values in various application areas.The emerging 3D printing technology further provides MOF and COFs(M/COFs)with higher designability of their macrostructure and demonstrates large achievements in their performance by shaping them into advanced 3D monoliths.However,the currently available 3D printing M/COFs strategy faces a major challenge of severe destruction of M/COFs’microstructural features,both during and after 3D printing.It is envisioned that preserving the microstructure of M/COFs in the 3D-printed monolith will bring a great improvement to the related applications.In this overview,the 3D-printed M/COFs are categorized into M/COF-mixed monoliths and M/COF-covered monoliths.Their differences in the properties,applications,and current research states are discussed.The up-to-date advancements in paste/scaffold composition and printing/covering methods to preserve the superior M/COF microstructure during 3D printing are further discussed for the two types of 3D-printed M/COF.Throughout the analysis of the current states of 3D-printed M/COFs,the expected future research direction to achieve a highly preserved microstructure in the 3D monolith is proposed.
基金The authors are thankful to Ministry of Human Resource Development(presently Ministry of Education),Government of India,New Delhi,for providing research facility by sanctioning Center of Excellence(F.No.5-6/2013-TS VII)in Tissue Engineering and Center of Excellence in Orthopedic Tissue Engineering and Rehabilitation funded by World Bank under TEQIP-II.
文摘Sodium alginate(SA)/chitosan(CH)polyelectrolyte scaffold is a suitable substrate for tissue-engineering application.The present study deals with further improvement in the tensile strength and biological properties of this type of scaffold to make it a potential template for bone-tissue regeneration.We experimented with adding 0%–15%(volume fraction)gelatin(GE),a protein-based biopolymer known to promote cell adhesion,proliferation,and differentiation.The resulting tri-polymer complex was used as bioink to fabricate SA/CH/GEmatrices by three-dimensional(3D)printing.Morphological studies using scanning electron microscopy revealed the microfibrous porous architecture of all the structures,which had a pore size range of 383–419μm.X-ray diffraction and Fourier-transform infrared spectroscopy analyses revealed the amorphous nature of the scaffold and the strong electrostatic interactions among the functional groups of the polymers,thereby forming polyelectrolyte complexes which were found to improve mechanical properties and structural stability.The scaffolds exhibited a desirable degradation rate,controlled swelling,and hydrophilic characteristics which are favorable for bone-tissue engineering.The tensile strength improved from(386±15)to(693±15)kPa due to the increased stiffness of SA/CH scaffolds upon addition of gelatin.The enhanced protein adsorption and in vitro bioactivity(forming an apatite layer)confirmed the ability of the SA/CH/GE scaffold to offer higher cellular adhesion and a bone-like environment to cells during the process of tissue regeneration.In vitro biological evaluation including the MTT assay,confocal microscopy analysis,and alizarin red S assay showed a significant increase in cell attachment,cell viability,and cell proliferation,which further improved biomineralization over the scaffold surface.In addition,SA/CH containing 15%gelatin designated as SA/CH/GE15 showed superior performance to the other fabricated 3D structures,demonstrating its potential for use in bone-tissue engineering.
基金National Natural Science Foundation of China,Grant/Award Numbers:22005297,22125903,51872283,22209175,22209176National Key Research and Development Program of China,Grant/Award Number:2022YFA1504100+8 种基金Support Program for Excellent Young Talents in Universities of Anhui Province,Grant/Award Number:2022AH030134Anhui Province Higher Education Innovation Team:Key Technologies and Equipment Innovation Team for Clean Energy,Grant/Award Number:2023AH010055Strategic Priority Research Program of the Chinese Academy of Sciences,Grant/Award Number:XDB36030200Dalian Innovation Support Plan for High Level Talents,Grant/Award Number:2019RT09Dalian National Laboratory for Clean Energy(DNL),CAS,DNL Cooperation Fund,CAS,Grant/Award Numbers:DNL202016,DNL202019,DNL202003DICP,Grant/Award Number:DICP I2020032Doctor Research Startup Foundation of Suzhou University,Grant/Award Number:2023BSK015China Postdoctoral Science Foundation,Grant/Award Numbers:2020M680995,2021M693127International Postdoctoral Exchange Fellowship Program,Grant/Award Number:YJ20210311。
文摘The rapid advancement in the miniaturization,integration,and intelligence of electronic devices has escalated the demand for customizable microsupercapacitors(MSCs)with high energy density.However,efficient microfabrication of safe and high‐energy MXene MSCs for integrating microelectronics remains a significant challenge due to the low voltage window in aqueous electrolytes(typically≤0.6 V)and limited areal mass loading of MXene microelectrodes.Here,we tackle these challenges by developing a highconcentration(18mol kg^(−1))“water‐in‐LiBr”(WiB)gel electrolyte for MXene symmetric MSCs(M‐SMSCs),demonstrating a record high voltage window of 1.8 V.Subsequently,additive‐free aqueous MXene ink with excellent rheological behavior is developed for three‐dimensional(3D)printing customizable all‐MXene microelectrodes on various substrates.Leveraging the synergy of a highvoltage WiB gel electrolyte and 3D‐printed microelectrodes,quasi‐solid‐state MSMSCs operating stably at 1.8 V are constructed,and achieve an ultrahigh areal energy density of 1772μWhcm^(−2)and excellent low‐temperature tolerance,with a long‐term operation at−40℃.Finally,by extending the 3D printing protocol,M‐SMSCs are integrated with humidity sensors on a single planar substrate,demonstrating their reliability in miniaturized integrated microsystems.
基金sponsored by the National Natural Science Foundation of China (Nos.52235007, 52325504, T2121004)Zhejiang Province Natural Science Foundation of China under Grant No.LQ23H090012, LQ22H180001the Science and Technology of Medicine and Health program of Zhejiang Province (No.2023RC028)。
文摘Synthetic vascular grafts suitable for small-diameter arteries(<6 mm) are in great need.However,there are still no commercially available small-diameter vascular grafts(SDVGs) in clinical practice due to thrombosis and stenosis after in vivo implantation.When designing SDVGs,many studies emphasized reendothelization but ignored the importance of reconstruction of the smooth muscle layer(SML).To facilitate rapid SML regeneration,a high-resolution 3D printing method was used to create a novel bilayer SDVG with structures and mechanical properties mimicking natural arteries.Bioinspired by the collagen alignment of SML,the inner layer of the grafts had larger pore sizes and high porosity to accelerate the infiltration of cells and their circumferential alignment,which could facilitate SML reconstruction for compliance restoration and spontaneous endothelialization.The outer layer was designed to induce fibroblast recruitment by low porosity and minor pore size and provide SDVG with sufficient mechanical strength.One month after implantation,the arteries regenerated by 3D-printed grafts exhibited better pulsatility than electrospun grafts,with a compliance(8.9%) approaching that of natural arteries(11.36%) and significantly higher than that of electrospun ones(1.9%).The 3D-printed vascular demonstrated a three-layer structure more closely resembling natural arteries while electrospun grafts showed incomplete endothelium and immature SML.Our study shows the importance of SML reconstruction during vascular graft regeneration and provides an effective strategy to reconstruct blood vessels through 3D-printed structures rapidly.
文摘Honeycomb sandwich structures are widely used in lightweight applications.Usually,these structures are subjected to extreme loading conditions,leading to potential failures due to delamination and debonding between the face sheet and the honeycomb core.Therefore,the present study is focused on the mechanical characterisation of honeycomb sandwich structures fabricated using advanced 3D printing technology.The continuous carbon fibres and ONYX-FR matrix materials have been used as raw materials for 3D printing of the specimens needed for various mechanical characterization testing;ONYX-FR is a commercial trade name for flame retardant short carbon fibre filled nylon filaments,used as a reinforcing material in Morkforged 3D printer.Edgewise and flatwise compression tests have been conducted for different configurations of honeycomb sandwich structures,fabricated by varying the face sheet thickness and core cell size,while keeping the core cell thickness and core height constant.Based on these tests,the proposed structure with face sheet thickness of 3.2 mm and a core cell size of 12.7 mm exhibited the highest energy absorption and prevented delamination and debonding failures.Therefore,3D printing technology can also be considered as an alternative method for sandwich structure fabrication.However,detailed parametric studies still need to be conducted to meet various other structural integrity criteria related to the lightweight applications.
基金This study was supported by the following funds:National Key R&D Program of China(No.2018YFE0207900)Program for Innovation Team of Shaanxi Province(No.2023-CXTD-17)+5 种基金Program of the National Natural Science Foundation of China(No.51835010)Key R&D Program of Guangdong Province(No.2018B090906001)Natural Science Basic Research Program of Shaanxi Province(No.2022JQ-378)China Postdoctoral Science Foundation(No.2020M683458)Fundamental Research Funds for the Central Universities(8)Youth Innovation Team of Shaanxi Universities.
文摘Based on the building principle of additive manufacturing,printing orientation mainly determines the tribological properties of joint prostheses.In this study,we created a polyether-ether-ketone(PEEK)joint prosthesis using fused filament fabrication and investigated the effects of printing orientation on its tribological properties using a pin-on-plate tribometer in 25% newborn calf serum.An ultrahigh molecular weight polyethylene transfer film is formed on the surface of PEEK due to the mechanical capture of wear debris by the 3D-printed groove morphology,which is significantly impacted by the printing orientation of PEEK.When the printing orientation was parallel to the sliding direction of friction,the number and size of the transfer film increased due to higher steady stress.This transfer film protected the matrix and reduced the friction coefficient and wear rate of friction pairs by 39.13%and 74.33%,respectively.Furthermore,our findings provide a novel perspective regarding the role of printing orientation in designing knee prostheses,facilitating its practical applications.
基金support was received from the Key Research and Development Program of Zhejiang Province,China(No.2023C02040)the Natural Science Foundation of Henan Province,China(No.222300420152)+3 种基金the Medical Science and Technology Research Program of Henan Province,China(No.LHGJ20220677)the National Natural Science Foundation of China(No.32372757)the Innovative Program of Chinese Academy of Agricultural Sciences(Nos.Y2022QC24 and CAASASTIP-2021-TRI)the Postdoctoral Research and Development Fund of West China Hospital,Sichuan University(No.2023HXBH052).
文摘Nerve regeneration holds significant potential in the treatment of various skeletal and neurological disorders to restore lost sensory and motor functions.The potential of nerve regeneration in ameliorating neurological diseases and injuries is critical to human health.Three-dimensional(3D)printing offers versatility and precision in the fabrication of neural scaffolds.Complex neural structures such as neural tubes and scaffolds can be fabricated via 3Dprinting.This reviewcomprehensively analyzes the current state of 3D-printed neural scaffolds and explores strategies to enhance their design.It highlights therapeutic strategies and structural design involving neural materials and stem cells.First,nerve regeneration materials and their fabrication techniques are outlined.The applications of conductive materials in neural scaffolds are reviewed,and their potential to facilitate neural signal transmission and regeneration is highlighted.Second,the progress in 3D-printed neural scaffolds applied to the peripheral and central nerves is comprehensively evaluated,and their potential to restore neural function and promote the recovery of different nervous systems is emphasized.In addition,various applications of 3D-printed neural scaffolds in peripheral and neurological diseases,as well as the design strategies of multifunctional biomimetic scaffolds,are discussed.
文摘The novelty of this research lies in the successful fabrication of a 3D-printed honeycomb structure filled with nanofillers for acoustic properties,utilizing an impedance tube setup in accordance with ASTM standard E 1050-12.The Creality Ender-3,a 3D printer,was used for printing the honeycomb structures,and polylactic acid(PLA)material was employed for their construction.The organic,inorganic,and polymeric compounds within the composites were identified using fourier transformation infrared(FTIR)spectroscopy.The structure and homogeneity of the samples were examined using a field emission scanning electron microscope(FESEM).To determine the sound absorption coefficient of the 3D printed honeycomb structure,numerous samples were systematically developed using central composite design(CCD)and analysed using response surface methodology(RSM).The RSM mathematical model was established to predict the optimum values of each factor and noise reduction coefficient(NRC).The optimum values for an NRC of 0.377 were found to be 1.116 wt% carbon black,1.025 wt% aluminium powder,and 3.151 mm distance between parallel edges.Overall,the results demonstrate that a 3Dprinted honeycomb structure filled with nanofillers is an excellent material that can be utilized in various fields,including defence and aviation,where lightweight and acoustic properties are of great importance.
基金financially supported by the National Natural Science Foundation of China(No.52175352)the Xing Liao Ying Cai Project of Liaoning Province(No.XLYC2008036)the Shenyang Youth Innovation Talent Support Program(No.RC220429)。
文摘The important supporting component in a gas turbine is the casing,which has the characteristics of large size,complex structure,and thin wall.In the context of existing 3DP sand casting processes,casting crack defects are prone to occur.This leads to an increase in the scrap rate of casings,causing significant resource wastage.Additionally,the presence of cracks poses a significant safety hazard after the casings are put into service.The generation of different types of crack defects in stainless steel casings is closely related to casting stress and the high-temperature concession of the sand mold.Therefore,the types and causes of cracks in stainless steel casing products,based on their structural characteristics,were systematically analyzed.Various sand molds with different internal topology designs were printed using the 3DP technology to investigate the impact of sand mold structures on high-temperature concession.The optimal sand mold structure was used to cast casings,and the crack suppression effect was verified by analyzing its eddy current testing results.The experimental results indicate that the skeleton structure has an excellent effect on suppressing cracks in the casing.This research holds important theoretical and engineering significance in improving the quality of casing castings and reducing production costs.
基金Nanning Technology and Innovation Special Program(20204122)and Research Grant for 100 Talents of Guangxi Plan.
文摘Esophageal disease is a common disorder of the digestive system that can severely affect the quality of life andprognosis of patients. Esophageal stenting is an effective treatment that has been widely used in clinical practice.However, esophageal stents of different types and parameters have varying adaptability and effectiveness forpatients, and they need to be individually selected according to the patient’s specific situation. The purposeof this study was to provide a reference for clinical doctors to choose suitable esophageal stents. We used 3Dprinting technology to fabricate esophageal stents with different ratios of thermoplastic polyurethane (TPU)/(Poly-ε-caprolactone) PCL polymer, and established an artificial neural network model that could predict the radial forceof esophageal stents based on the content of TPU, PCL and print parameter. We selected three optimal ratios formechanical performance tests and evaluated the biomechanical effects of different ratios of stents on esophagealimplantation, swallowing, and stent migration processes through finite element numerical simulation and in vitrosimulation tests. The results showed that different ratios of polymer stents had different mechanical properties,affecting the effectiveness of stent expansion treatment and the possibility of postoperative complications of stentimplantation.
基金supported by the National Research Foundation of Korea(NRF)grant funded by the Ministry of Science and ICT(MSIT)(No.2021R1A2C2012808)Technology Innovation Program(Alchemist Project)(No.20012378)funded by the Ministry of Trade,Industry&Energy(MOTIE),South Korea.
文摘Dose-dense chemotherapy is the preferred first-line therapy for triple-negative breast cancer(TNBC),a highly aggressive disease with a poor prognosis.This treatment uses the same drug doses as conventional chemotherapy but with shorter dosing intervals,allowing for promising clinical outcomes with intensive treatment.However,the frequent systemic administration used for this treatment results in systemic toxicity and low patient compliance,limiting therapeutic efficacy and clinical benefit.Here,we report local dose-dense chemotherapy to treat TNBC by implanting 3D printed devices with timeprogrammed pulsatile release profiles.The implantable device can control the time between drug releases based on its internal microstructure design,which can be used to control dose density.The device is made of biodegradable materials for clinical convenience and designed for minimally invasive implantation via a trocar.Dose density variation of local chemotherapy using programmable release enhances anti-cancer effects in vitro and in vivo.Under the same dose density conditions,device-based chemotherapy shows a higher anticancer effect and less toxic response than intratumoral injection.We demonstrate local chemotherapy utilizing the implantable device that simulates the drug dose,number of releases,and treatment duration of the dose-dense AC(doxorubicin and cyclophosphamide)regimen preferred for TNBC treatment.Dose density modulation inhibits tumor growth,metastasis,and the expression of drug resistance-related proteins,including p-glycoprotein and breast cancer resistance protein.To the best of our knowledge,local dose-dense chemotherapy has not been reported,and our strategy can be expected to be utilized as a novel alternative to conventional therapies and improve anti-cancer efficiency.
基金support from the National Natural Science Foundation of China(Nos.T2222029,U21A20396,and 62127811)the Strategic Priority Research Program of the Chinese Academy of Sciences(CAS)(No.XDA16020802)the CAS Project for Young Scientists in Basic Research(No.YSBR-012).
文摘In the intricate skeletal muscle tissue,the symbiotic relationship between myotubes and their supporting vasculature is pivotal in delivering essential oxygen and nutrients.This study explored the complex interplay between skeletal muscle and endothelial cells in the vascularization ofmuscle tissue.By harnessing the capabilities of three-dimensional(3D)bioprinting and modeling,we developed a novel approach involving the co-construction of endothelial and muscle cells,followed by their subsequent differentiation.Our findings highlight the importance of the interaction dynamics between these two cell types.Notably,introducing endothelial cells during the advanced phases of muscle differentiation enhanced myotube assembly.Moreover,it stimulated the development of the vascular network,paving the way for the early stages of vascularized skeletal muscle development.The methodology proposed in this study indicates the potential for constructing large-scale,physiologically aligned skeletal muscle.Additionally,it highlights the need for exploring the delicate equilibrium and mutual interactions between muscle and endothelial cells.Based on the multicell-type interaction model,we can predict promising pathways for constructing even more intricate tissues or organs.
基金Open Subject of Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases,College of Stomatology,Xi’an Jiaotong University(Project No.2011YHJB08)。
文摘Objective:To analyze the effectiveness of personalized 3D-printed rehabilitation orthotics in the postoperative recovery of jaw fractures.Methods:Relevant data were collected from 42 patients with jaw fractures treated at our hospital between October 2017 and May 2020.Patients were randomly divided into a traditional group(n=17)and a modified group(n=25).The traditional group received standard rehabilitation methods,while the modified group used personalized 3D-printed rehabilitation orthotics combined with improved rehabilitation methods.The temporomandibular disability index(TDI),quality of life scores,postoperative recovery excellence rate,and mouth opening were compared between the two groups at different follow-up times(before rehabilitation,and at 1 week,3 months,and 6 months post-surgery).Results:At 1 week,3 months,and 6 months post-surgery,the TDI in both the traditional and modified groups was significantly lower than before rehabilitation,with statistically significant differences(P<0.05).At 3 and 6 months post-surgery,the TDI in the modified group was lower than in the traditional group,with statistically significant differences(P<0.05).At 3 and 6 months post-surgery,pain,appearance,activity,recreation,work,chewing,swallowing,speech,shoulder function,and total quality of life scores in both groups were higher than before rehabilitation,with the modified group showing significantly higher scores in pain,appearance,chewing,swallowing,and total quality of life(P<0.05).Compared to before rehabilitation,mouth opening significantly improved in both groups at 3 and 6 months post-surgery,with the modified group showing significantly greater improvement(P<0.05).Conclusion:Personalized 3D-printed rehabilitation orthotics are highly effective in the postoperative recovery of jaw fractures.They can improve patients’quality of life after surgery,enhance the excellent rate of postoperative recovery,and increase mouth opening.
基金financially supported by the National Natural Science Foundation of China(No.51933007,No.52373047,No.52302106)the Sichuan Youth Science and Technology Innovation Research Team Project(No.2022JDTD0012)+2 种基金the Program for Featured Directions of Engineering Multidisciplines of Sichuan University(No.2020SCUNG203)the Natural Science Foundation of Sichuan Province(No.2023NSFSC0418)the Program for State Key Laboratory of Polymer Materials Engineering(No.sklpme2022-3-10)。
文摘The tireless pursuit of supercapacitors with high energy density entails the parallel advancement of wellsuited electrode materials and elaborately engineered architectures.Polypyrrole(PPy)emerges as an exceedingly conductive polymer and a prospective pseudocapacitive materials for supercapacitors,yet the inferior cyclic stability and unpredictable polymerization patterns severely impede its real-world applicability.Here,for the first time,an innovative seed-induced in-situ polymerization assisted 3D printing strategy is proposed to fabricate PPy-reduced graphene oxide/poly(vinylidene difluoride-cohexafluoropropylene)(PVDF-HFP)(PPy-rGO/PH)electrodes with controllable polymerization behavior and exceptional areal mass loading.The preferred active sites uniformly pre-planted on the 3D-printed graphene substrates serve as reliable seeds to induce efficient polypyrrole deposition,achieving an impressive mass loading of 185.6 mg cm^(-2)(particularly 79.2 mg cm^(-2)for polypyrrole)and a superior areal capacitance of 25.2 F cm^(-2)at 2 mA cm^(-2)for a 12-layer electrode.In agreement with theses appealing features,an unprecedented areal energy density of 1.47 mW h cm^(-2)for a symmetrical device is registered,a rarely achieved value for other PPy/rGO-based supercapacitors.This work highlights a promising route to preparing high energy density energy storage modules for real-world applications.
基金supported by the Research Impact Fund(project no.R4015-21)Research Fellow Scheme(project no.RFS2122-4S03)Strategic Topics Grant(project no.STG1/E-401/23-N)from the Hong Kong Research Grants Council(RGC)and the CUHK internal grants。
文摘Miniature devices comprising stimulus-responsive hydrogels with high environmental adaptability are now considered competitive candidates in the fields of biomedicine,precise sensors,and tunable optics.Reliable and advanced fabricationmethods are critical formaximizing the application capabilities ofminiature devices.Light-based three-dimensional(3D)printing technology offers the advantages of a wide range of applicable materials,high processing accuracy,and strong 3D fabrication capability,which is suitable for the development of miniature devices with various functions.This paper summarizes and highlights the recent advances in light-based 3D-printed miniaturized devices,with a focus on the latest breakthroughs in lightbased fabrication technologies,smart stimulus-responsive hydrogels,and tunable miniature devices for the fields of miniature cargo manipulation,targeted drug and cell delivery,active scaffolds,environmental sensing,and optical imaging.Finally,the challenges in the transition of tunable miniaturized devices from the laboratory to practical engineering applications are presented.Future opportunities that will promote the development of tunable microdevices are elaborated,contributing to their improved understanding of these miniature devices and further realizing their practical applications in various fields.