Three-dimensional (3D) printing is a novel promising technology based on 3D imaging and layer-by-layer additive fabrication. It has a profound influence on all aspects of our lives and is playing an increasing impor...Three-dimensional (3D) printing is a novel promising technology based on 3D imaging and layer-by-layer additive fabrication. It has a profound influence on all aspects of our lives and is playing an increasing important role in many areas including engineering, manufacturing, art, education and medicine. "3D bioprinting" has been put forward with the technical progress in 3D printing and might be a possible way to solve the serious problem of human organ shortage in tissue engineering and regenerative medicine. Many research groups flung them into this area and have already made some gratifying achievements. However, it is a long way to fabricate a live organ. Many elements lead to the limitation of 3D bioprinting. This review introduces the background and development history of 3D bioprinting, compares different approaches of 3D bioprinting and illustrates the key factors of the printing process. Meanwhile, this review also points out existing challenges of 3D bioprinting and has a great prospect. Some points proposed in this review might be served as reference for the research of this field.展开更多
Surface texture patterns have great potential for improving tribological performance in terms of reducing friction and wear. The most common methods for surface texatring are laser and injection molding. The 3D printi...Surface texture patterns have great potential for improving tribological performance in terms of reducing friction and wear. The most common methods for surface texatring are laser and injection molding. The 3D printing method is also used to build parts, patterns, and molds that feature fine details for a wide range of applications because texture manufacturing by 3D printing is faster, more flexible, and less expensive than traditional techniques. To date, there has been no research on textured surfaces produced by 3D printing. Therefore, a new fabrication method using 3D printing to improve friction and wear properties is a topic worth exploring. In this study, a reciprocating friction tester was used to evaluate the friction and wear properties of different surface textures produced by 3D printing. The surface of specimens was examined by electron microscope and scanning electron microscope before and after the test. The results show that surface texturing can be applied to 3D printed parts to improve their friction and wear performance.展开更多
基金Acknowledgements The authors would like to acknowledge the support from National Natural Science Foundation of China under Grant 81501607 and 51475419, Natural Science Foundation of Zhejiang Province of China under Grant LY15H160019, Key Research and Development Projects of Zhejiang Province under Grant 2017C 1054.
文摘Three-dimensional (3D) printing is a novel promising technology based on 3D imaging and layer-by-layer additive fabrication. It has a profound influence on all aspects of our lives and is playing an increasing important role in many areas including engineering, manufacturing, art, education and medicine. "3D bioprinting" has been put forward with the technical progress in 3D printing and might be a possible way to solve the serious problem of human organ shortage in tissue engineering and regenerative medicine. Many research groups flung them into this area and have already made some gratifying achievements. However, it is a long way to fabricate a live organ. Many elements lead to the limitation of 3D bioprinting. This review introduces the background and development history of 3D bioprinting, compares different approaches of 3D bioprinting and illustrates the key factors of the printing process. Meanwhile, this review also points out existing challenges of 3D bioprinting and has a great prospect. Some points proposed in this review might be served as reference for the research of this field.
基金supported by the Basic Science Research Program of the National Research Foundation of Korea(NRF)funded by the Ministry of Education,Science and Technology of the Korean government(Grant No.NRF-2015R1D1A1A09060901)Ministry of Trade,Industry and Energy via FY 2015 Korea Institute for the Advancement of technology through Construction Machine R&D Expert Cultivation Program
文摘Surface texture patterns have great potential for improving tribological performance in terms of reducing friction and wear. The most common methods for surface texatring are laser and injection molding. The 3D printing method is also used to build parts, patterns, and molds that feature fine details for a wide range of applications because texture manufacturing by 3D printing is faster, more flexible, and less expensive than traditional techniques. To date, there has been no research on textured surfaces produced by 3D printing. Therefore, a new fabrication method using 3D printing to improve friction and wear properties is a topic worth exploring. In this study, a reciprocating friction tester was used to evaluate the friction and wear properties of different surface textures produced by 3D printing. The surface of specimens was examined by electron microscope and scanning electron microscope before and after the test. The results show that surface texturing can be applied to 3D printed parts to improve their friction and wear performance.