期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
一种基于丰富视觉信息学习的3D场景物体标注算法 被引量:3
1
作者 吴培良 刘海东 孔令富 《小型微型计算机系统》 CSCD 北大核心 2017年第1期154-159,共6页
在智能服务机器人领域,根据场景的图像序列来完成场景重构及其中物体的检测与标注,是机器人场景理解、人机交互及后续服务的基础.本文针对基于RGB-D数据的3D场景物体标注展开研究,设计了一种充分融合颜色与深度数据的物体建模学习方法,... 在智能服务机器人领域,根据场景的图像序列来完成场景重构及其中物体的检测与标注,是机器人场景理解、人机交互及后续服务的基础.本文针对基于RGB-D数据的3D场景物体标注展开研究,设计了一种充分融合颜色与深度数据的物体建模学习方法,并将其应用于图像目标快速检测及3D场景物体标注.离线学习阶段,在构建物体检测模型时,加入了物体颜色的高斯模型,与物体的RGB-D HOG特征一同构成先验模型.在线阶段,首先对待检测的场景图像进行超像素分割,将对场景图像的处理从以像素为单位转变为以超像素区域为单位;同时计算每个超像素区域的高斯颜色模型,并与物体的先验高斯颜色模型比对,筛选得到物体所在的候选超像素区域;然后,在筛选出的超像素周围进行滑动窗口搜索,计算目标物体出现在场景图像中的概率图;最后,将该概率图映射到3D场景中对应体素,联合该体素及其周边体素构建马尔科夫随机场,进而进行3D场景物体标注.实验结果表明,由于引入了超像素处理,以及基于颜色模型比对的超像素筛选,所处理的数据量大大减少,在基本不损失精度的同时,算法效率明显提高. 展开更多
关键词 目标物体识别 RGB-d HOG特征 高斯颜色先验模型 超像素分割 3d场景物体标注
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部