This paper presents a complete system for scanning the geometry and texture of a large 3D object, then the automatic registration is performed to obtain a whole realistic 3D model. This system is composed of one line ...This paper presents a complete system for scanning the geometry and texture of a large 3D object, then the automatic registration is performed to obtain a whole realistic 3D model. This system is composed of one line strip laser and one color CCD camera. The scanned object is pictured twice by a color CCD camera. First, the texture of the scanned object is taken by a color CCD camera. Then the 3D information of the scanned object is obtained from laser plane equations. This paper presents a practical way to implement the three dimensional measuring method and the automatic registration of a large 3D object and a pretty good result is obtained after experiment verification.展开更多
Since rough surface scattering has a great impact on the accuracy of the propagation prediction algorithm,an integrated algorithm for indoor propagation prediction including rough surface scattering is proposed here.T...Since rough surface scattering has a great impact on the accuracy of the propagation prediction algorithm,an integrated algorithm for indoor propagation prediction including rough surface scattering is proposed here.This algorithm is composed of a three dimensional(3D) ray tracing algorithm based on binary space partitioning(BSP) and a diffuse scattering algorithm based on Oren-Nayar's theory.Lack of accuracy and prohibitive time consumption are the main drawbacks of the existing ray tracing based propagation prediction models.To defy these shortcomings,the balanced BSP tree is used in the proposed algorithm to accelerate the ray tracing,while the nearest object priority technique(NOP) and in contact surface(ICS) is used to eliminate the repeated rayobject intersection tests.Therefore,the final criteria of this study are the time consumption as well as accuracy by predicting the field strength and the number of received signals.Using the proposed approaches,our algorithm becomes faster and more accurate than the existing algorithms.A detailed comparative study with existing algorithms shows that the proposed algorithm has at most 37.83%higher accuracy and 34.44%lower time consumption.Moreover,effects of NOP and ICS techniques and scattering factor on time and ray prediction accuracy are also presented.展开更多
文摘This paper presents a complete system for scanning the geometry and texture of a large 3D object, then the automatic registration is performed to obtain a whole realistic 3D model. This system is composed of one line strip laser and one color CCD camera. The scanned object is pictured twice by a color CCD camera. First, the texture of the scanned object is taken by a color CCD camera. Then the 3D information of the scanned object is obtained from laser plane equations. This paper presents a practical way to implement the three dimensional measuring method and the automatic registration of a large 3D object and a pretty good result is obtained after experiment verification.
基金financial support under the University of Malaya Research Grant(UMRG) scheme(RG098/12ICT)
文摘Since rough surface scattering has a great impact on the accuracy of the propagation prediction algorithm,an integrated algorithm for indoor propagation prediction including rough surface scattering is proposed here.This algorithm is composed of a three dimensional(3D) ray tracing algorithm based on binary space partitioning(BSP) and a diffuse scattering algorithm based on Oren-Nayar's theory.Lack of accuracy and prohibitive time consumption are the main drawbacks of the existing ray tracing based propagation prediction models.To defy these shortcomings,the balanced BSP tree is used in the proposed algorithm to accelerate the ray tracing,while the nearest object priority technique(NOP) and in contact surface(ICS) is used to eliminate the repeated rayobject intersection tests.Therefore,the final criteria of this study are the time consumption as well as accuracy by predicting the field strength and the number of received signals.Using the proposed approaches,our algorithm becomes faster and more accurate than the existing algorithms.A detailed comparative study with existing algorithms shows that the proposed algorithm has at most 37.83%higher accuracy and 34.44%lower time consumption.Moreover,effects of NOP and ICS techniques and scattering factor on time and ray prediction accuracy are also presented.