Spinal dural arteriovenous fistulas (SDAVF) account for about 70% of all spinal AV shunts. We re-port on a 56-year-old male patient with progressive neurological symptoms. Pre- and post-contrast MR imaging of the spin...Spinal dural arteriovenous fistulas (SDAVF) account for about 70% of all spinal AV shunts. We re-port on a 56-year-old male patient with progressive neurological symptoms. Pre- and post-contrast MR imaging of the spine, including contrast-enhanced MR angiography was done on a 1.5 T MR scanner. In addition a special (pre-contrast) 3D turbo-spin-echo sequence with variable flip angle evolution (SPACE) was performed providing a slice thickness of 0.9 mm. T2-weighted images showed extensive widened and tortuous vascular structures with typical flow voids intradurally due to dilated pial veins. The origin of the spinal dural arteriovenous fistula was found to be the radiculomeningeal artery at level D10/11 on the left side, visualized by the T2-weighted 3D SPACE sequence and CE MRA. After imaging the patient was referred to an interventional neuroradiology department for therapy. With the detailed information from MR imaging concerning the fistula level the interventional radiologist was able to find the fistula immediately and consequently treated it successfully by endovascular therapy. Interpreting the MR images of this obvious case of a SDAVF, SPACE sequence after post processing with 3D MPR software directly led to the location of the AV shunt at D10/11 on the left side, better than 3D contrast-enhanced MR angiography did. Therefore, SPACE can be a useful adjunct in further evaluation of spinal dural arteriovenous fistula and especially in defining fistula level.展开更多
文摘Spinal dural arteriovenous fistulas (SDAVF) account for about 70% of all spinal AV shunts. We re-port on a 56-year-old male patient with progressive neurological symptoms. Pre- and post-contrast MR imaging of the spine, including contrast-enhanced MR angiography was done on a 1.5 T MR scanner. In addition a special (pre-contrast) 3D turbo-spin-echo sequence with variable flip angle evolution (SPACE) was performed providing a slice thickness of 0.9 mm. T2-weighted images showed extensive widened and tortuous vascular structures with typical flow voids intradurally due to dilated pial veins. The origin of the spinal dural arteriovenous fistula was found to be the radiculomeningeal artery at level D10/11 on the left side, visualized by the T2-weighted 3D SPACE sequence and CE MRA. After imaging the patient was referred to an interventional neuroradiology department for therapy. With the detailed information from MR imaging concerning the fistula level the interventional radiologist was able to find the fistula immediately and consequently treated it successfully by endovascular therapy. Interpreting the MR images of this obvious case of a SDAVF, SPACE sequence after post processing with 3D MPR software directly led to the location of the AV shunt at D10/11 on the left side, better than 3D contrast-enhanced MR angiography did. Therefore, SPACE can be a useful adjunct in further evaluation of spinal dural arteriovenous fistula and especially in defining fistula level.