To further research on high-parameter plasma,we plan to develop a two-dimensional hard X-ray(HXR)imaging system at the HL-3 tokamak to measure HXRs with energies ranging from 20 to 300 keV.The application of an array-...To further research on high-parameter plasma,we plan to develop a two-dimensional hard X-ray(HXR)imaging system at the HL-3 tokamak to measure HXRs with energies ranging from 20 to 300 keV.The application of an array-structured detector ensures that this system can measure HXR-radiation spectra from the entire plasma cross section.Therefore,it is suitable for the study of fast-electron physics,such as radio-frequency wave current drives,fast electrons driving instabilities,and plasma disruptions in fusion research.In this study,we develop a simulation for calculating fast-electron bremsstrahlung in the HL-3 tokamak based on the Monte Carlo simulation code Geant4,in which the plasma geometry and forward scattering of fast-electron bremsstrahlung are considered.The preliminary calculation results indicate that the HXR energy deposi-tion on the detector is symmetrically distributed,even though the plasma distribution is asymmetric owing to the toroidal effect.These simulation results are helpful in constructing the relationship between the energy deposition on the detector and parameter distribution on the plasma cross section during HL-3 experiments.This is beneficial for the reconstruction of the fast-electron-distribution function and for optimizing the design of the HXR-imaging system.展开更多
Traditional clothing design models based on adaptive meshes cannot reflect.To solve this problem,a clothing simulation design model based on 3D image analysis technology is established.The model uses feature extractio...Traditional clothing design models based on adaptive meshes cannot reflect.To solve this problem,a clothing simulation design model based on 3D image analysis technology is established.The model uses feature extraction and description of image evaluation parameters,and establishes the mapping relationship between image features and simulation results by using the optimal parameter values,thereby obtaining a three-dimensional image simulation analysis environment.On the basis of this model,by obtaining the response results of clothing collision detection and the results of local adaptive processing of clothing meshes,the cutting form and actual cutting effect of clothing are determined to construct a design model.The simulation results show that compared with traditional clothing design models,clothing simulation design based on 3D image analysis technology has a better effect,with the definition of fabric folds increasing by 40%.More striking contrast between light and dark,the resolution increasing by 30%,and clothing details getting a more real manifestation.展开更多
Numerical simulation is the most powerful computational and analysis tool for a large variety of engineering and physical problems.For a complex problem relating to multi-field,multi-process and multi-scale,different ...Numerical simulation is the most powerful computational and analysis tool for a large variety of engineering and physical problems.For a complex problem relating to multi-field,multi-process and multi-scale,different computing tools have to be developed so as to solve particular fields at different scales and for different processes.Therefore,the integration of different types of software is inevitable.However,it is difficult to perform the transfer of the meshes and simulated results among software packages because of the lack of shared data formats or encrypted data formats.An image processing based method for three-dimensional model reconstruction for numerical simulation was proposed,which presents a solution to the integration problem by a series of slice or projection images obtained by the post-processing modules of the numerical simulation software.By means of mapping image pixels to meshes of either finite difference or finite element models,the geometry contour can be extracted to export the stereolithography model.The values of results,represented by color,can be deduced and assigned to the meshes.All the models with data can be directly or indirectly integrated into other software as a continued or new numerical simulation.The three-dimensional reconstruction method has been validated in numerical simulation of castings and case studies were provided in this study.展开更多
Objective To study the effect of using improved 2D computer-assisted fluoroscopic navigation through simulating 3D vertebrae image to guide pedicle screw internal fixation.Methods Posterior pedicle screw internal fixa...Objective To study the effect of using improved 2D computer-assisted fluoroscopic navigation through simulating 3D vertebrae image to guide pedicle screw internal fixation.Methods Posterior pedicle screw internal fixation,distraction展开更多
The safety accidents caused by collapse column water diversion occur frequently, which has great hidden danger to the safety production of coal mine. Limited by the space of underground, the detection of collapse colu...The safety accidents caused by collapse column water diversion occur frequently, which has great hidden danger to the safety production of coal mine. Limited by the space of underground, the detection of collapse column on the outside of working face has been a difficult problem. Based on this, numerical simulation and imaging research were carried out in this paper. The results indicate that when a seismic source near the roadway is excited, a part of seismic wave propagates along the roadway direction, namely direct P-wave, direct S-wave and direct Love channel wave.<span style="font-family:;" "=""> </span><span style="font-family:Verdana;">When the body waves and Love channel wave propagating to the outside</span><span style="font-family:;" "=""> </span><span style="font-family:Verdana;">of working face meet the interface of collapse column, the reflected Love channel wave and reflected body waves are generated.</span><span style="font-family:;" "=""> </span><span style="font-family:Verdana;">Reflection </span><span style="font-family:Verdana;">body </span><span style="font-family:Verdana;">waves and direct waves are mixed in time domain, which is difficult to identify in seismic records, while reflected Love channel wave whose amplitude is relatively strong. The </span><span style="font-family:Verdana;">reflected </span><span style="font-family:Verdana;">Love channel wave which has a large interval from other wave trains in the time domain is easily recognizable in seismic record,</span><span style="font-family:;" "=""> </span><span style="font-family:Verdana;">which</span><span style="font-family:;" "=""> </span><span style="font-family:Verdana;">makes it suitable for advanced detection of collapse column. The signal-to-noise ratio of X component is higher than that of Y component and Z component. According to the seismic records, polarization filtering was carried out to enhance the effective wave, which removed the interference waves, and the signal was migrated to get the position parameters of collapse column interface, which was basically consistent with the model position.</span>展开更多
The ultra-wide bandgap semiconductor β gallium oxide(β-Ga_(2) O_(3)) gives promise to low conduction loss and high power for electronic devices. However, due to the natural poor thermal conductivity of β-Ga_(2) O_(...The ultra-wide bandgap semiconductor β gallium oxide(β-Ga_(2) O_(3)) gives promise to low conduction loss and high power for electronic devices. However, due to the natural poor thermal conductivity of β-Ga_(2) O_(3), their power devices suffer from serious self-heating effect. To overcome this problem, we emphasize on the effect of device structure on peak temperature in β-Ga_(2) O_(3) Schottky barrier diodes(SBDs) using TCAD simulation and experiment. The SBD topologies including crystal orientation of β-Ga_(2) O_(3), work function of Schottky metal, anode area, and thickness, were simulated in TCAD, showing that the thickness of β-Ga_(2) O_(3) plays a key role in reducing the peak temperature of diodes. Hence, we fabricated β-Ga_(2) O_(3) SBDs with three different thickness epitaxial layers and five different thickness substrates. The surface temperature of the diodes was measured using an infrared thermal imaging camera. The experimental results are consistent with the simulation results. Thus, our results provide a new thermal management strategy for high power β-Ga_(2) O_(3) diode.展开更多
基金supported by the National Natural Science Foundation of China(No.12305239)Scientific Research Foundation of Chongqing University of Technology(No.2023ZDZ053)National Key R&D Program of China(No.2019YFE03010001).
文摘To further research on high-parameter plasma,we plan to develop a two-dimensional hard X-ray(HXR)imaging system at the HL-3 tokamak to measure HXRs with energies ranging from 20 to 300 keV.The application of an array-structured detector ensures that this system can measure HXR-radiation spectra from the entire plasma cross section.Therefore,it is suitable for the study of fast-electron physics,such as radio-frequency wave current drives,fast electrons driving instabilities,and plasma disruptions in fusion research.In this study,we develop a simulation for calculating fast-electron bremsstrahlung in the HL-3 tokamak based on the Monte Carlo simulation code Geant4,in which the plasma geometry and forward scattering of fast-electron bremsstrahlung are considered.The preliminary calculation results indicate that the HXR energy deposi-tion on the detector is symmetrically distributed,even though the plasma distribution is asymmetric owing to the toroidal effect.These simulation results are helpful in constructing the relationship between the energy deposition on the detector and parameter distribution on the plasma cross section during HL-3 experiments.This is beneficial for the reconstruction of the fast-electron-distribution function and for optimizing the design of the HXR-imaging system.
文摘Traditional clothing design models based on adaptive meshes cannot reflect.To solve this problem,a clothing simulation design model based on 3D image analysis technology is established.The model uses feature extraction and description of image evaluation parameters,and establishes the mapping relationship between image features and simulation results by using the optimal parameter values,thereby obtaining a three-dimensional image simulation analysis environment.On the basis of this model,by obtaining the response results of clothing collision detection and the results of local adaptive processing of clothing meshes,the cutting form and actual cutting effect of clothing are determined to construct a design model.The simulation results show that compared with traditional clothing design models,clothing simulation design based on 3D image analysis technology has a better effect,with the definition of fabric folds increasing by 40%.More striking contrast between light and dark,the resolution increasing by 30%,and clothing details getting a more real manifestation.
基金funded by National Key R&D Program of China(No.2021YFB3401200)the National Natural Science Foundation of China(No.51875308)the Beijing Nature Sciences Fund-Haidian Originality Cooperation Project(L212002).
文摘Numerical simulation is the most powerful computational and analysis tool for a large variety of engineering and physical problems.For a complex problem relating to multi-field,multi-process and multi-scale,different computing tools have to be developed so as to solve particular fields at different scales and for different processes.Therefore,the integration of different types of software is inevitable.However,it is difficult to perform the transfer of the meshes and simulated results among software packages because of the lack of shared data formats or encrypted data formats.An image processing based method for three-dimensional model reconstruction for numerical simulation was proposed,which presents a solution to the integration problem by a series of slice or projection images obtained by the post-processing modules of the numerical simulation software.By means of mapping image pixels to meshes of either finite difference or finite element models,the geometry contour can be extracted to export the stereolithography model.The values of results,represented by color,can be deduced and assigned to the meshes.All the models with data can be directly or indirectly integrated into other software as a continued or new numerical simulation.The three-dimensional reconstruction method has been validated in numerical simulation of castings and case studies were provided in this study.
文摘Objective To study the effect of using improved 2D computer-assisted fluoroscopic navigation through simulating 3D vertebrae image to guide pedicle screw internal fixation.Methods Posterior pedicle screw internal fixation,distraction
文摘The safety accidents caused by collapse column water diversion occur frequently, which has great hidden danger to the safety production of coal mine. Limited by the space of underground, the detection of collapse column on the outside of working face has been a difficult problem. Based on this, numerical simulation and imaging research were carried out in this paper. The results indicate that when a seismic source near the roadway is excited, a part of seismic wave propagates along the roadway direction, namely direct P-wave, direct S-wave and direct Love channel wave.<span style="font-family:;" "=""> </span><span style="font-family:Verdana;">When the body waves and Love channel wave propagating to the outside</span><span style="font-family:;" "=""> </span><span style="font-family:Verdana;">of working face meet the interface of collapse column, the reflected Love channel wave and reflected body waves are generated.</span><span style="font-family:;" "=""> </span><span style="font-family:Verdana;">Reflection </span><span style="font-family:Verdana;">body </span><span style="font-family:Verdana;">waves and direct waves are mixed in time domain, which is difficult to identify in seismic records, while reflected Love channel wave whose amplitude is relatively strong. The </span><span style="font-family:Verdana;">reflected </span><span style="font-family:Verdana;">Love channel wave which has a large interval from other wave trains in the time domain is easily recognizable in seismic record,</span><span style="font-family:;" "=""> </span><span style="font-family:Verdana;">which</span><span style="font-family:;" "=""> </span><span style="font-family:Verdana;">makes it suitable for advanced detection of collapse column. The signal-to-noise ratio of X component is higher than that of Y component and Z component. According to the seismic records, polarization filtering was carried out to enhance the effective wave, which removed the interference waves, and the signal was migrated to get the position parameters of collapse column interface, which was basically consistent with the model position.</span>
基金supported by the National Natural Science Foundation of China (Grant Nos. 61925110, 61821091, 62004184, 62004186, and 51961145110)the National Key R&D Program of China (Grant Nos. 2018YFB0406504 and 2016YFA0201803)+4 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences (CAS)(Grant No. XDB44000000)the Key Research Program of Frontier Sciences of CAS (Grant No. QYZDB-SSW-JSC048)the Fundamental Research Funds for the Central Universities,China (Grant Nos. WK2100000014 and WK2100000010)the Key-Area Research and Development Program of Guangdong Province,China (Grant No. 2020B010174002)the Opening Project of Key Laboratory of Microelectronics Devices&Integration Technology in Institute of Microelectronics of CAS and Key Laboratory of Nanodevices and Applications in Suzhou Institute of Nano-Tech and Nano-Bionics of CAS。
文摘The ultra-wide bandgap semiconductor β gallium oxide(β-Ga_(2) O_(3)) gives promise to low conduction loss and high power for electronic devices. However, due to the natural poor thermal conductivity of β-Ga_(2) O_(3), their power devices suffer from serious self-heating effect. To overcome this problem, we emphasize on the effect of device structure on peak temperature in β-Ga_(2) O_(3) Schottky barrier diodes(SBDs) using TCAD simulation and experiment. The SBD topologies including crystal orientation of β-Ga_(2) O_(3), work function of Schottky metal, anode area, and thickness, were simulated in TCAD, showing that the thickness of β-Ga_(2) O_(3) plays a key role in reducing the peak temperature of diodes. Hence, we fabricated β-Ga_(2) O_(3) SBDs with three different thickness epitaxial layers and five different thickness substrates. The surface temperature of the diodes was measured using an infrared thermal imaging camera. The experimental results are consistent with the simulation results. Thus, our results provide a new thermal management strategy for high power β-Ga_(2) O_(3) diode.