期刊文献+
共找到1,019篇文章
< 1 2 51 >
每页显示 20 50 100
Decade Milestone Advancement of Defect-Engineered g-C_(3)N_(4) for Solar Catalytic Applications 被引量:3
1
作者 Shaoqi Hou Xiaochun Gao +8 位作者 Xingyue Lv Yilin Zhao Xitao Yin Ying Liu Juan Fang Xingxing Yu Xiaoguang Ma Tianyi Ma Dawei Su 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第4期153-218,共66页
Over the past decade, graphitic carbon nitride(g-C_(3)N_(4)) has emerged as a universal photocatalyst toward various sustainable carbo-neutral technologies. Despite solar applications discrepancy, g-C_(3)N_(4) is stil... Over the past decade, graphitic carbon nitride(g-C_(3)N_(4)) has emerged as a universal photocatalyst toward various sustainable carbo-neutral technologies. Despite solar applications discrepancy, g-C_(3)N_(4) is still confronted with a general fatal issue of insufficient supply of thermodynamically active photocarriers due to its inferior solar harvesting ability and sluggish charge transfer dynamics. Fortunately, this could be significantly alleviated by the “all-in-one” defect engineering strategy, which enables a simultaneous amelioration of both textural uniqueness and intrinsic electronic band structures. To this end, we have summarized an unprecedently comprehensive discussion on defect controls including the vacancy/non-metallic dopant creation with optimized electronic band structure and electronic density, metallic doping with ultraactive coordinated environment(M–N_(x), M–C_(2)N_(2), M–O bonding), functional group grafting with optimized band structure, and promoted crystallinity with extended conjugation π system with weakened interlayered van der Waals interaction. Among them, the defect states induced by various defect types such as N vacancy, P/S/halogen dopants, and cyano group in boosting solar harvesting and accelerating photocarrier transfer have also been emphasized. More importantly, the shallow defect traps identified by femtosecond transient absorption spectra(fs-TAS) have also been highlighted. It is believed that this review would pave the way for future readers with a unique insight into a more precise defective g-C_(3)N_(4) “customization”, motivating more profound thinking and flourishing research outputs on g-C_(3)N_(4)-based photocatalysis. 展开更多
关键词 Defect engineering g-C_(3)N_(4) Electronic band structures Photocarrier transfer kinetics Defect states
下载PDF
Accelerated Sequential Deposition Reaction via Crystal Orientation Engineering for Low-Temperature,High-Efficiency Carbon-Electrode CsPbBr_(3) Solar Cells 被引量:1
2
作者 Zeyang Zhang Weidong Zhu +10 位作者 Tianjiao Han Tianran Wang Wenming Chai Jiaduo Zhu He Xi Dazheng Chen Gang Lu Peng Dong Jincheng Zhang Chunfu Zhang Yue Hao 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第1期168-175,共8页
Low-temperature,ambient processing of high-quality CsPbBr_(3)films is demanded for scalable production of efficient,low-cost carbon-electrode perovskite solar cells(PSCs).Herein,we demonstrate a crystal orientation en... Low-temperature,ambient processing of high-quality CsPbBr_(3)films is demanded for scalable production of efficient,low-cost carbon-electrode perovskite solar cells(PSCs).Herein,we demonstrate a crystal orientation engineering strategy of PbBr_(2)precursor film to accelerate its reaction with CsBr precursor during two-step sequential deposition of CsPbBr_(3)films.Such a novel strategy is proceeded by adding CsBr species into PbBr_(2)precursor,which can tailor the preferred crystal orientation of PbBr_(2)film from[020]into[031],with CsBr additive staying in the film as CsPb_(2)Br_(5)phase.Theoretical calculations show that the reaction energy barrier of(031)planes of PbBr_(2)with CsBr is lower about 2.28 eV than that of(O2O)planes.Therefore,CsPbBr_(3)films with full coverage,high purity,high crystallinity,micro-sized grains can be obtained at a low temperature of 150℃.Carbon-electrode PSCs with these desired CsPbBr_(3)films yield the record-high efficiency of 10.27%coupled with excellent operation stability.Meanwhile,the 1 cm^(2)area one with the superior efficiency of 8.00%as well as the flexible one with the champion efficiency of 8.27%and excellent mechanical bending characteristics are also achieved. 展开更多
关键词 carbon-electrode perovskite solar cells crystal orientation engineering CsPbBr_(3) low temperature two-step sequential deposition
下载PDF
Constructing a biofunctionalized 3D-printed gelatin/sodium alginate/chitosan tri-polymer complex scaffold with improvised biological andmechanical properties for bone-tissue engineering
3
作者 Amit Kumar Singh Krishna Pramanik Amit Biswas 《Bio-Design and Manufacturing》 SCIE EI CAS CSCD 2024年第1期57-73,共17页
Sodium alginate(SA)/chitosan(CH)polyelectrolyte scaffold is a suitable substrate for tissue-engineering application.The present study deals with further improvement in the tensile strength and biological properties of... Sodium alginate(SA)/chitosan(CH)polyelectrolyte scaffold is a suitable substrate for tissue-engineering application.The present study deals with further improvement in the tensile strength and biological properties of this type of scaffold to make it a potential template for bone-tissue regeneration.We experimented with adding 0%–15%(volume fraction)gelatin(GE),a protein-based biopolymer known to promote cell adhesion,proliferation,and differentiation.The resulting tri-polymer complex was used as bioink to fabricate SA/CH/GEmatrices by three-dimensional(3D)printing.Morphological studies using scanning electron microscopy revealed the microfibrous porous architecture of all the structures,which had a pore size range of 383–419μm.X-ray diffraction and Fourier-transform infrared spectroscopy analyses revealed the amorphous nature of the scaffold and the strong electrostatic interactions among the functional groups of the polymers,thereby forming polyelectrolyte complexes which were found to improve mechanical properties and structural stability.The scaffolds exhibited a desirable degradation rate,controlled swelling,and hydrophilic characteristics which are favorable for bone-tissue engineering.The tensile strength improved from(386±15)to(693±15)kPa due to the increased stiffness of SA/CH scaffolds upon addition of gelatin.The enhanced protein adsorption and in vitro bioactivity(forming an apatite layer)confirmed the ability of the SA/CH/GE scaffold to offer higher cellular adhesion and a bone-like environment to cells during the process of tissue regeneration.In vitro biological evaluation including the MTT assay,confocal microscopy analysis,and alizarin red S assay showed a significant increase in cell attachment,cell viability,and cell proliferation,which further improved biomineralization over the scaffold surface.In addition,SA/CH containing 15%gelatin designated as SA/CH/GE15 showed superior performance to the other fabricated 3D structures,demonstrating its potential for use in bone-tissue engineering. 展开更多
关键词 SCAFFOLD Biomaterial Sodium alginate CHITOSAN GELATIN 3D printing Tissue engineering
下载PDF
Enhanced Electrical Properties of Bi_(2−x)Sb_(x)Te_(3) Nanoflake Thin Films Through Interface Engineering
4
作者 Xudong Wu Junjie Ding +8 位作者 Wenjun Cui Weixiao Lin Zefan Xue Zhi Yang Jiahui Liu Xiaolei Nie Wanting Zhu Gustaaf Van Tendeloo Xiahan Sang 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第6期359-366,共8页
The structure–property relationship at interfaces is difficult to probe for thermoelectric materials with a complex interfacial microstructure.Designing thermoelectric materials with a simple,structurally-uniform int... The structure–property relationship at interfaces is difficult to probe for thermoelectric materials with a complex interfacial microstructure.Designing thermoelectric materials with a simple,structurally-uniform interface provides a facile way to understand how these interfaces influence the transport properties.Here,we synthesized Bi_(2−x)Sb_(x)Te_(3)(x=0,0.1,0.2,0.4)nanoflakes using a hydrothermal method,and prepared Bi_(2−x)Sb_(x)Te_(3) thin films with predominantly(0001)interfaces by stacking the nanoflakes through spin coating.The influence of the annealing temperature and Sb content on the(0001)interface structure was systematically investigated at atomic scale using aberration-corrected scanning transmission electron microscopy.Annealing and Sb doping facilitate atom diffusion and migration between adjacent nanoflakes along the(0001)interface.As such it enhances interfacial connectivity and improves the electrical transport properties.Interfac reactions create new interfaces that increase the scattering and the Seebeck coefficient.Due to the simultaneous optimization of electrical conductivity and Seebeck coefficient,the maximum power factor of the Bi_(1.8)Sb_(0.2)Te_(3) nanoflake films reaches 1.72 mW m^(−1)K^(−2),which is 43%higher than that of a pure Bi_(2)Te_(3) thin film. 展开更多
关键词 Bi_(2)Te_(3) nanoflakes interface engineering scanning transmission electron microscopy thermoelectric thin film
下载PDF
Defect chemistry engineering of Ga-doped garnet electrolyte with high stability for solid-state lithium metal batteries
5
作者 陈思汗 黎俊 +5 位作者 刘可可 孙笑晨 万京伟 翟慧宇 唐新峰 谭刚健 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第8期560-567,共8页
Ga-doped Li_(7)La_(3)Zr_(2)O_(12)(Ga-LLZO)has long been considered as a promising garnet-type electrolyte candidate for all-solid-state lithium metal batteries(ASSLBs)due to its high room temperature ionic conductivit... Ga-doped Li_(7)La_(3)Zr_(2)O_(12)(Ga-LLZO)has long been considered as a promising garnet-type electrolyte candidate for all-solid-state lithium metal batteries(ASSLBs)due to its high room temperature ionic conductivity.However,the typical synthesis of Ga-LLZO is usually accompanied by the formation of undesired LiGaO_(2) impurity phase that causes severe instability of the electrolyte in contact with molten Li metal during half/full cell assembly.In this study,we show that by simply engineering the defect chemistry of Ga-LLZO,namely,the lithium deficiency level,LiGaO_(2) impurity phase is effectively inhibited in the final synthetic product.Consequently,defect chemistry engineered Ga-LLZO exhibits excellent electrochemical stability against lithium metal,while its high room temperature ionic conductivity(~1.9×10^(-3)S·cm^(-1))is well reserved.The assembled Li/Ga-LLZO/Li symmetric cell has a superior critical current density of 0.9 mA·cm^(-2),and cycles stably for 500 hours at a current density of 0.3 mA·cm^(-2).This research facilitates the potential commercial applications of high performance Ga-LLZO solid electrolytes in ASSLBs. 展开更多
关键词 Ga-doped Li_7La_3Zr_2O_(12)(Ga-LLZO) defect chemistry engineering high room temperature ionic conductivity electrochemical stability
下载PDF
3D printing of functional bioengineered constructs for neural regeneration: a review 被引量:1
6
作者 Hui Zhu Cong Yao +6 位作者 Boyuan Wei Chenyu Xu Xinxin Huang Yan Liu Jiankang He Jianning Zhang Dichen Li 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2023年第4期87-118,共32页
Three-dimensional(3D)printing technology has opened a new paradigm to controllably and reproducibly fabricate bioengineered neural constructs for potential applications in repairing injured nervous tissues or producin... Three-dimensional(3D)printing technology has opened a new paradigm to controllably and reproducibly fabricate bioengineered neural constructs for potential applications in repairing injured nervous tissues or producing in vitro nervous tissue models.However,the complexity of nervous tissues poses great challenges to 3D-printed bioengineered analogues,which should possess diverse architectural/chemical/electrical functionalities to resemble the native growth microenvironments for functional neural regeneration.In this work,we provide a state-of-the-art review of the latest development of 3D printing for bioengineered neural constructs.Various 3D printing techniques for neural tissue-engineered scaffolds or living cell-laden constructs are summarized and compared in terms of their unique advantages.We highlight the advanced strategies by integrating topographical,biochemical and electroactive cues inside 3D-printed neural constructs to replicate in vivo-like microenvironment for functional neural regeneration.The typical applications of 3D-printed bioengineered constructs for in vivo repair of injured nervous tissues,bio-electronics interfacing with native nervous system,neural-on-chips as well as brain-like tissue models are demonstrated.The challenges and future outlook associated with 3D printing for functional neural constructs in various categories are discussed. 展开更多
关键词 3D printing bioengineered neural constructs neural regeneration nerve tissue engineering nervous tissue models
下载PDF
3D-printed engineered bacteria-laden gelatin/sodium alginate composite hydrogels for biological detection of ionizing radiation
7
作者 Ziyuan Chen Jintao Shen +8 位作者 Meng Wei Wenrui Yan Qiucheng Yan Zhangyu Li Yaqiong Chen Feng Zhang Lina Du Bochuan Yuan Yiguang Jin 《Bio-Design and Manufacturing》 SCIE EI CAS CSCD 2023年第4期439-450,共12页
Nuclear safety is a global growing concern,where ionizing radiation(IR)is a major injury factor resulting in serious damage to organisms.The detection of IR is usually conducted with physical dosimeters;however,biolog... Nuclear safety is a global growing concern,where ionizing radiation(IR)is a major injury factor resulting in serious damage to organisms.The detection of IR is usually conducted with physical dosimeters;however,biological IR detection methods are deficient.Here,a living composite hydrogel consisting of engineered bacteria and gelatin/sodium alginate was 3D-printed for the biological detection of IR.Three strains of PrecA::egfp gene circuit-containing engineered Escherichia coli were constructed with IR-dependent fluorescence,and the DH5αstrain was finally selected due to its highest radiation response and fluorescence.Engineered bacteria were loaded in a series of gelatin/sodium alginate matrix hydrogels with different rheology,3D printability and bacterial applicability.A high-gelatin-content hydrogel containing 10%gelatin/1.25%sodium alginatewas optimal.The optimal living composite hydrogelwas 3D-printedwith the special bioink,which reported significant green fluorescence underγ-ray radiation.The living composite hydrogel provides a biological strategy for the detection of environmental ionizing radiation. 展开更多
关键词 3D printing ALGINATE engineered bacteria GELATIN HYDROGEL Ionizing radiation
下载PDF
Application of 2-D and 3-D Geo-electrical Resistivity Tomography and Geotechnical Soil Evaluation for Engineering Site Investigation:A Case Study of Okerenkoko Primary School,Warri-Southwest,Delta State,Nigeria
8
作者 U.Stanley Eze M.Edirin Okiotor +3 位作者 J.E.Ighodalo B.Jennifer Owonaro A.Saleh Saleh A.Sikiru Jamiu 《Advances in Geological and Geotechnical Engineering Research》 2023年第2期1-23,共23页
In the design of building structures,joint efforts must be decided to resolve the depth of competent layers across the intended site to safeguard the durability of civil engineering structures and to avert the disastr... In the design of building structures,joint efforts must be decided to resolve the depth of competent layers across the intended site to safeguard the durability of civil engineering structures and to avert the disastrous consequences of structural failure and collapse.In this study,an integrated methodology that employed DC resistivity tomography involving 2-D and 3-D techniques and geotechnical-soil analysis was used to evaluate subsoil conditions for engineering site investigation at Okerenkoko primary school,in the Warri-southwest area of Delta State,to adduce the phenomena responsible for the visible cracks/structural failure observed in the buildings.The results obtained brought to light the geological structure beneath the subsurface,which consists of four geoelectric layers identified as topsoil,dry/lithified upper sandy layer,wet sand(water-saturated)and peat/clay/sandy clayey soil(highly water-saturated).The deeply-seated peat/clay materials(ρ≤20Ωm)were delineated in the study area to the depths of 17.1 m and 19.8 m from 2-D and 3-D tomography respectively.3-D images presented as horizontal depth slices revealed the dominance of very low resistivity materials i.e.peat/clay/sandy clay within the fourth,fifth and sixth layers at depths ranging from 8.68-12.5 m,12.5-16.9 m and 16.9-21.9 m respectively.The dominance of mechanically unstable peat/clay/sandy clay layers beneath the subsurface,which are highly mobile in response to volumetric changes,is responsible for the noticeable cracks/failure detected on structures within the study site.These observations were validated by a geotechnical test of soil samples in the study area.Atterberg’s limits of the samples revealed plasticity indices of zero.Thus,the soil samples within the depth analyzed were representatives of sandy soil that does not possess any plasticity.The methods justifiably provided relevant information on the subsurface geology beneath the study site and should be appropriated as major tools for engineering site assessment/geotechnical projects. 展开更多
关键词 2D and 3D resistivity tomography engineering site/structure Atterberg limits Orthogonal lines Radar sounding
下载PDF
“新工科”背景下建筑设计人才“3+3+3”培养模式的建构
9
作者 蒋博雅 陈昇 +2 位作者 王妍君 曾碧晶 刘峰 《华中建筑》 2024年第1期139-143,共5页
“新工科”国家战略的推动下,我国高等院校建筑人才培养面临新的挑战,建筑设计人才培养体系、培养质量与“新工科”建设愿景仍存在差距。该研究借鉴新加坡高等教育发展历程以及新加坡国立大学建筑设计人才培养内涵,探析如何在“新工科... “新工科”国家战略的推动下,我国高等院校建筑人才培养面临新的挑战,建筑设计人才培养体系、培养质量与“新工科”建设愿景仍存在差距。该研究借鉴新加坡高等教育发展历程以及新加坡国立大学建筑设计人才培养内涵,探析如何在“新工科”背景下推动建筑设计人才培养模式的建构,以培养主体、培养途径、培养层级三要素为建筑设计人才培养框架,创新性提出“3+3+3”多层级建筑人才培养模式,以期为“新工科”战略的实施提供高素质建筑设计人才保障。 展开更多
关键词 “新工科” 建筑设计 3+3+3 培养模式建构
下载PDF
基于Pro/ENGINEER的电池盖注射3D模设计
10
作者 孟少明 陈晨 《CAD/CAM与制造业信息化》 2012年第11期41-43,共3页
本文运用Pro/ENGINEER及其EMX4.1模块完成电池盖模具整个设计工作,还利用了Moldflow Adviser 7.1软件对塑件进行模流分析,从而使设计的整个过程实现无纸化,有利于提高模具的生产效率,节约了生产成本,并大大缩短了生产的周期。
关键词 PRO engineER 设计工作 电池盖 MOLDFLOW 3D 注射 生产效率 模流分析
下载PDF
在Pro/ENGINEER环境下3D公差的实现
11
作者 吴卓 夏长春 《CAD/CAM与制造业信息化》 2007年第6期56-58,共3页
立体公差标注是三维CAD/CAM软件的瓶颈,本文作者通过实例介绍一套在Pro/ENGINEER环境下3D公差的表示方法,实现了三维公差的标注,并在一定程度上解决了三维模型对工程图的依赖。
关键词 PRO/engineER 公差标注 3D 环境 CAD/CAM软件 三维模型 工程图
下载PDF
“3+2”联合培养模式下本科层次职业教育数学课程衔接发展研究——以安徽机电职业技术学院为例
12
作者 刘苏兵 尤游 +1 位作者 吕会影 周长远 《安徽警官职业学院学报》 2024年第1期115-119,共5页
“3+2”联合培养模式是本科层次职业教育的主要模式之一,有利于提升本科教育与职业教育的课程衔接效果。以安徽机电职业技术学院为例,剖析本科层次职业教育数学课程衔接背景与课程开展现状,从目标衔接、内容衔接、教法衔接、考核评价衔... “3+2”联合培养模式是本科层次职业教育的主要模式之一,有利于提升本科教育与职业教育的课程衔接效果。以安徽机电职业技术学院为例,剖析本科层次职业教育数学课程衔接背景与课程开展现状,从目标衔接、内容衔接、教法衔接、考核评价衔接等方面,深入分析本科层次职业教育数学课程衔接发展的措施,有助于为“3+2”联合培养模式下本科与职业教育数学课程的顺利衔接提供参考。 展开更多
关键词 3+2联合培养模式 本科层次职业教育 数学课程 安徽机电职业技术学院
下载PDF
Selective sulfur conversion with surface engineering of electrocatalysts in a lithium-sulfur battery 被引量:2
13
作者 Yuejin Zhu Yinze Zuo +4 位作者 Xuechao Jiao Revanasiddappa Manjunatha Ejikeme Raphael Ezeigwe Wei Yan Jiujun Zhang 《Carbon Energy》 SCIE CSCD 2023年第2期72-84,共13页
The sluggish kinetics of multiphase sulfur conversion with homogeneous and heterogeneous electrochemical processes,causing the“shuttle effect”of soluble polysulfide species(PSs),is the challenges in terms of lithium... The sluggish kinetics of multiphase sulfur conversion with homogeneous and heterogeneous electrochemical processes,causing the“shuttle effect”of soluble polysulfide species(PSs),is the challenges in terms of lithium-sulfur batteries(LSBs).In this paper,a Mn_(3)O_(4-x) catalyst,which has much higher activity for heterogeneous reactions than for homogeneous reactions(namely,preferentialactivity catalysts),is designed by surface engineering with rational oxygen vacancies.Due to the rational design of the electronic structure,the Mn_(3)O_(4-x) catalyst prefers to accelerate the conversion of Li2S4 into Li_(2)S_(2)/Li_(2)S and optimize Li_(2)S deposition,reducing the accumulation of PSs and thus suppressing the“shuttle effect.”Both density functional theory calculations and in situ X-ray diffraction measurements are used to probe the catalytic mechanism and identify the reaction intermediates of MnS and Li_(y)Mn_(z)O_(4-x) for fundamental understanding.The cell with Mn_(3)O_(4-x) delivers an ultralow attenuation rate of 0.028% per cycle over 2000 cycles at 2.5 C.Even with sulfur loadings of 4.93 and 7.10mg cm^(-2) in a lean electrolyte(8.4μL mg s^(-1)),the cell still shows an initial areal capacity of 7.3mAh cm^(-2).This study may provide a new way to develop preferential-activity heterogeneous-reaction catalysts to suppress the“shuttle effect”of the soluble PSs generated during the redox process of LSBs. 展开更多
关键词 electrochemical kinetics heterogeneous catalysis lithium-sulfur batteries Mn3O4-x-catalyzed separator surface engineering
下载PDF
低压环境下RP-3航空煤油自燃特性研究 被引量:1
14
作者 张沛 王学辉 +2 位作者 王娟 王丹 汪箭 《安全与环境学报》 CAS CSCD 北大核心 2024年第2期545-550,共6页
开展了低压环境下RP-3航空煤油的自燃特性研究,测试了101 kPa、80 kPa、60 kPa、40 kPa、20 kPa五种压力环境下航空煤油自燃点及着火延迟时间数据。结果表明,随着环境压力降低,自燃点升高,并基于谢苗诺夫热自燃理论,建立了耦合压力参数... 开展了低压环境下RP-3航空煤油的自燃特性研究,测试了101 kPa、80 kPa、60 kPa、40 kPa、20 kPa五种压力环境下航空煤油自燃点及着火延迟时间数据。结果表明,随着环境压力降低,自燃点升高,并基于谢苗诺夫热自燃理论,建立了耦合压力参数的自燃点预测模型。分析了环境压力对着火延迟时间的影响机制,建立了不同环境压力下的着火延迟时间预测模型。分析了GB/T 5332—2007标准在低压环境下测试存在的问题,并提出了相关改进方法。 展开更多
关键词 安全工程 RP-3航空煤油 低压环境 自燃点 着火延迟时间
下载PDF
GTP-based Integral Real-3D Spatial Model for Engineering Excavation GIS 被引量:11
15
作者 WULixin SHIWenzhong 《Geo-Spatial Information Science》 2004年第2期123-128,共6页
Engineering excavation GIS (E 2 GIS) is a real-3D GIS serving for geosciences related to geo-engineering, civil engineering and mining engineering based on generalized tri-prism (GTP) model. As two instances of GTP mo... Engineering excavation GIS (E 2 GIS) is a real-3D GIS serving for geosciences related to geo-engineering, civil engineering and mining engineering based on generalized tri-prism (GTP) model. As two instances of GTP model, G\|GTP is used for the real\|3D modeling of subsurface geological bodies, and E\|GTP is used for the real\|3D modeling of subsurface engineering excavations.In the light of the discussions on the features and functions of E 2 GIS, the modeling principles of G\|GTP and E\|GTP are introduced. The two models couple together seamlessly to form an integral model for subsurface spatial objects including both geological bodies and excavations. An object\|oriented integral real\|3D data model and integral spatial topological relations are discussed. 展开更多
关键词 real-3D spatial modeling GEOSCIENCES engineering GTP model E^2 GIS
下载PDF
Optimizing the Performance of CsPbI3-Based Perovskite Solar Cells via Doping a ZnO Electron Transport Layer Coupled with Interface Engineering 被引量:5
16
作者 Man Yue Jie Su +4 位作者 Peng Zhao Zhenhua Lin Jincheng Zhang Jingjing Chang Yue Hao 《Nano-Micro Letters》 SCIE EI CAS CSCD 2019年第4期605-618,共14页
Interface engineering has been regarded as an effective and noninvasive means to optimize the performance of perovskite solar cells(PSCs).Here,doping engineering of a ZnO electron transport layer(ETL)and CsPbI3/ZnO in... Interface engineering has been regarded as an effective and noninvasive means to optimize the performance of perovskite solar cells(PSCs).Here,doping engineering of a ZnO electron transport layer(ETL)and CsPbI3/ZnO interface engineering via introduction of an interfacial layer are employed to improve the performances of CsPbI3-based PSCs.The results show that when introducing a TiO2 buffer layer while increasing the ZnO layer doping concentration,the open-circuit voltage,power conversion efficiency,and fill factor of the CsPbI3-based PSCs can be improved to 1.31 V,21.06%,and 74.07%,respectively,which are superior to those of PSCs only modified by the TiO2 buffer layer or high-concentration doping of ZnO layer.On the one hand,the buffer layer relieves the band bending and structural disorder of CsPbI3.On the other hand,the increased doping concentration of the ZnO layer improves the conductivity of the TiO2/ZnO bilayer ETL because of the strong interaction between the TiO2 and ZnO layers.However,such phenomena are not observed for those of a PCBM/ZnO bilayer ETL because of the weak interlayer interaction of the PCBM/ZnO interface.These results provide a comprehensive understanding of the CsPbI3/ZnO interface and suggest a guideline to design high-performance PSCs. 展开更多
关键词 All-inorganic CsPbI3 perovskites INTERFACE engineERING DOPING ZNO Simulation
下载PDF
3D printing of tissue engineering scaffolds:a focus on vascular regeneration 被引量:9
17
作者 Pengju Wang Yazhou Sun +3 位作者 Xiaoquan Shi Huixing Shen Haohao Ning Haitao Liu 《Bio-Design and Manufacturing》 SCIE EI CSCD 2021年第2期344-378,共35页
Tissue engineering is an emerging means for resolving the problems of tissue repair and organ replacement in regenerative medicine.Insufficient supply of nutrients and oxygen to cells in large-scale tissues has led to... Tissue engineering is an emerging means for resolving the problems of tissue repair and organ replacement in regenerative medicine.Insufficient supply of nutrients and oxygen to cells in large-scale tissues has led to the demand to prepare blood vessels.Scaffold-based tissue engineering approaches are effective methods to form new blood vessel tissues.The demand for blood vessels prompts systematic research on fabrication strategies of vascular scaffolds for tissue engineering.Recent advances in 3D printing have facilitated fabrication of vascular scaffolds,contributing to broad prospects for tissue vascularization.This review presents state of the art on modeling methods,print materials and preparation processes for fabrication of vascular scaffolds,and discusses the advantages and application fields of each method.Specially,significance and importance of scaffold-based tissue engineering for vascular regeneration are emphasized.Print materials and preparation processes are discussed in detail.And a focus is placed on preparation processes based on 3D printing technologies and traditional manufacturing technologies including casting,electrospinning,and Lego-like construction.And related studies are exemplified.Transformation of vascular scaffolds to clinical application is discussed.Also,four trends of 3D printing of tissue engineering vascular scaffolds are presented,including machine learning,near-infrared photopolymerization,4D printing,and combination of self-assembly and 3D printing-based methods. 展开更多
关键词 Tissue engineering 3D printing Vascular scaffolds Print materials Modeling methods
下载PDF
Visible Light-Induced 3D Bioprinting Technologies and Corresponding Bioink Materials for Tissue Engineering: A Review 被引量:7
18
作者 Zizhuo Zheng David Eglin +3 位作者 Mauro Alini Geoff RRichards Ling Qin Yuxiao Lai 《Engineering》 SCIE EI 2021年第7期966-978,共13页
Three-dimensional(3D)bioprinting based on traditional 3D printing is an emerging technology that is used to precisely assemble biocompatible materials and cells or bioactive factors into advanced tissue engineering so... Three-dimensional(3D)bioprinting based on traditional 3D printing is an emerging technology that is used to precisely assemble biocompatible materials and cells or bioactive factors into advanced tissue engineering solutions.Similar technology,particularly photo-cured bioprinting strategies,plays an important role in the field of tissue engineering research.The successful implementation of 3D bioprinting is based on the properties of photopolymerized materials.Photocrosslinkable hydrogel is an attractive biomaterial that is polymerized rapidly and enables process control in space and time.Photopolymerization is frequently initiated by ultraviolet(UV)or visible light.However,UV light may cause cell damage and thereby,affect cell viability.Thus,visible light is considered to be more biocompatible than UV light for bioprinting.In this review,we provide an overview of photo curing-based bioprinting technologies,and describe a visible light crosslinkable bioink,including its crosslinking mechanisms,types of visible light initiator,and biomedical applications.We also discuss existing challenges and prospects of visible light-induced 3D bioprinting devices and hydrogels in biomedical areas. 展开更多
关键词 Medical additive manufacturing Bioink Tissue engineering 3D bioprinting
下载PDF
Tunable 3D Nanofiber Architecture of Polycaprolactone by Divergence Electrospinning for Potential Tissue Engineering Applications 被引量:6
19
作者 George Z.Tan Yingge Zhou 《Nano-Micro Letters》 SCIE EI CAS 2018年第4期314-323,共10页
The creation of biomimetic cell environments with micro and nanoscale topographical features resembling native tissues is critical for tissue engineering. To address this challenge, this study focuses on an innovative... The creation of biomimetic cell environments with micro and nanoscale topographical features resembling native tissues is critical for tissue engineering. To address this challenge, this study focuses on an innovative electrospinning strategy that adopts a symmetrically divergent electric field to induce rapid self-assembly of aligned polycaprolactone(PCL) nanofibers into a centimeter-scale architecture between separately grounded bevels. The 3D microstructures of the nanofiber scaffolds were characterized through a series of sectioning in both vertical and horizontal directions. PCL/collagen(type I)nanofiber scaffolds with different density gradients were incorporated in sodium alginate hydrogels and subjected to elemental analysis. Human fibroblasts were seeded onto the scaffolds and cultured for 7 days. Our studies showed that the inclination angle of the collector had significant effects on nanofiber attributes, including the mean diameter, density gradient, and alignment gradient. The fiber density and alignment at the peripheral area of the 45°-collector decreased by 21% and 55%, respectively, along the z-axis,while those of the 60°-collector decreased by 71% and 60%, respectively. By altering the geometry of the conductive areas on the collecting bevels, polyhedral and cylindrical scaffolds composed of aligned fibers were directly fabricated. By using a four-bevel collector, the nanofibers formed a matrix of microgrids with a density of 11%. The gradient of nitrogen-to-carbon ratio in the scaffold-incorporated hydrogel was consistent with the nanofiber density gradient. The scaffolds provided biophysical stimuli to facilitate cell adhesion, proliferation, and morphogenesis in 3D. 展开更多
关键词 Divergence electrospinning 3D nanofiber scaffold Tissue engineering Microstructure gradient
下载PDF
Color 3D Reverse Engineering 被引量:3
20
作者 XU Zhi-qin 1, YE Sheng-hua 1, FAN Guang-zhao 2 (1. School of Precision Instrument and Opto-electronics Engineering, N ational Key Lab of Measurement Technology and Instrument, EMC, Tianjin University, Tianjin, China 2. Department of Mechanical Engineering, National Taiwan University, Taiwan, Chi na) 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2002年第S1期152-,共1页
This paper presents a principle and a method of col or 3D laser scanning measurement. Based on the fundamental monochrome 3D measureme nt study, color information capture, color texture mapping, coordinate computati o... This paper presents a principle and a method of col or 3D laser scanning measurement. Based on the fundamental monochrome 3D measureme nt study, color information capture, color texture mapping, coordinate computati on and other techniques are performed to achieve color 3D measurement. The syste m is designed and composed of a line laser light emitter, one color CCD camera, a motor-driven rotary filter, a circuit card and a computer. Two steps in captu ring object’s images in the measurement process: First, the color CCD camera ta kes the color picture of the object to be used for texture mapping in post proce ssing. Secondly, the monochrome data of the object is taken. The laser light emi tter is started; the light plane and the surface of the object intersect to form an undulate line, which forms an image on the CCD sensor. After the optic- electronics transformation, the electronic signals are captured and send to the computer. A new color 3D measurement model was derived, and a rapid calibra ting method to measure the system parameters was proposed--optical plane equat ion calibrating method. A calibrating drone was designed and built. 3D color sca nning system not only provides an object’s individual point information in the 3D coordinate, in the mean time, it provides the color information of each indiv idual point. This paper also advances a multi-frame auto-merging method, i.e. several frames of color 3D digital images measured are merged quickly according to their curvature characteristics and RGB information. Initial matching and fin e tune of the registration are completely performed by the computer; initial mat ching is via user interface in helping computer to find the transformation matri x. The transformation matrix is found according to the geometric characteristics chosen by hand. After the initial transformation matrix is found, fine tune of the registration is preformed to do the optimum adjustment to achieve a complete color textured 3D model. The system can be broadly used in the fields of produc t design, mold manufacture, multimedia, game development, animation, medical eng ineering, antique digitization, etc. 展开更多
关键词 monochrome 3D color 3D optical plane equation surface merging reverse engineering
下载PDF
上一页 1 2 51 下一页 到第
使用帮助 返回顶部