The human pose paradigm is estimated using a transformer-based multi-branch multidimensional directed the three-dimensional(3D)method that takes into account self-occlusion,badly posedness,and a lack of depth data in ...The human pose paradigm is estimated using a transformer-based multi-branch multidimensional directed the three-dimensional(3D)method that takes into account self-occlusion,badly posedness,and a lack of depth data in the per-frame 3D posture estimation from two-dimensional(2D)mapping to 3D mapping.Firstly,by examining the relationship between the movements of different bones in the human body,four virtual skeletons are proposed to enhance the cyclic constraints of limb joints.Then,multiple parameters describing the skeleton are fused and projected into a high-dimensional space.Utilizing a multi-branch network,motion features between bones and overall motion features are extracted to mitigate the drift error in the estimation results.Furthermore,the estimated relative depth is projected into 3D space,and the error is calculated against real 3D data,forming a loss function along with the relative depth error.This article adopts the average joint pixel error as the primary performance metric.Compared to the benchmark approach,the estimation findings indicate an increase in average precision of 1.8 mm within the Human3.6M sample.展开更多
This article presents a passive navigation method of terrain contour matching by reconstructing the 3-D terrain from the image sequence(acquired by the onboard camera).To achieve automation and simultaneity of the ima...This article presents a passive navigation method of terrain contour matching by reconstructing the 3-D terrain from the image sequence(acquired by the onboard camera).To achieve automation and simultaneity of the image sequence processing for navigation,a correspondence registration method based on control points tracking is proposed which tracks the sparse control points through the whole image sequence and uses them as correspondence in the relation geometry solution.Besides,a key frame selection method based on the images overlapping ratio and intersecting angles is explored,thereafter the requirement for the camera system configuration is provided.The proposed method also includes an optimal local homography estimating algorithm according to the control points,which helps correctly predict points to be matched and their speed corresponding.Consequently,the real-time 3-D terrain of the trajectory thus reconstructed is matched with the referenced terrain map,and the result of which provides navigating information.The digital simulation experiment and the real image based experiment have verified the proposed method.展开更多
基金supported by the Medical Special Cultivation Project of Anhui University of Science and Technology(Grant No.YZ2023H2B013)the Anhui Provincial Key Research and Development Project(Grant No.2022i01020015)the Open Project of Key Laboratory of Conveyance Equipment(East China Jiaotong University),Ministry of Education(KLCE2022-01).
文摘The human pose paradigm is estimated using a transformer-based multi-branch multidimensional directed the three-dimensional(3D)method that takes into account self-occlusion,badly posedness,and a lack of depth data in the per-frame 3D posture estimation from two-dimensional(2D)mapping to 3D mapping.Firstly,by examining the relationship between the movements of different bones in the human body,four virtual skeletons are proposed to enhance the cyclic constraints of limb joints.Then,multiple parameters describing the skeleton are fused and projected into a high-dimensional space.Utilizing a multi-branch network,motion features between bones and overall motion features are extracted to mitigate the drift error in the estimation results.Furthermore,the estimated relative depth is projected into 3D space,and the error is calculated against real 3D data,forming a loss function along with the relative depth error.This article adopts the average joint pixel error as the primary performance metric.Compared to the benchmark approach,the estimation findings indicate an increase in average precision of 1.8 mm within the Human3.6M sample.
基金supported by the "Eleventh Five" Obligatory Budget of PLA (Grant No.513150801)
文摘This article presents a passive navigation method of terrain contour matching by reconstructing the 3-D terrain from the image sequence(acquired by the onboard camera).To achieve automation and simultaneity of the image sequence processing for navigation,a correspondence registration method based on control points tracking is proposed which tracks the sparse control points through the whole image sequence and uses them as correspondence in the relation geometry solution.Besides,a key frame selection method based on the images overlapping ratio and intersecting angles is explored,thereafter the requirement for the camera system configuration is provided.The proposed method also includes an optimal local homography estimating algorithm according to the control points,which helps correctly predict points to be matched and their speed corresponding.Consequently,the real-time 3-D terrain of the trajectory thus reconstructed is matched with the referenced terrain map,and the result of which provides navigating information.The digital simulation experiment and the real image based experiment have verified the proposed method.