The effects of Pb^2+concentration,current density,deposition time and temperature on Pb deposit structure were investigated.In lower Pb^2+concentration(~0.15 mol/L),carambola-like 3D-Pb structure was constructed,while...The effects of Pb^2+concentration,current density,deposition time and temperature on Pb deposit structure were investigated.In lower Pb^2+concentration(~0.15 mol/L),carambola-like 3D-Pb structure was constructed,while in higher Pb2+concentration(≥0.30 mol/L),Pb deposits exhibited pyramid-like structure.Furthermore,the oxide layer and anodic potential of carambola-shaped 3D-Pb(Cara-Pb)and pyramid-shaped 3D-Pb(Pyra-Pb)anodes were investigated and compared with those of fresh Pb anode.After 72 h galvanostatic electrolysis(50 mA/cm2)in 160 g/L H2SO4 solution,the oxide layer on Pyra-Pb was much thicker than that on Cara-Pb and Pb anodes,which remarkably relieved intercrystalline corrosion of the metallic substrate.Additionally,the oxide layer on Pyra-Pb anode presented a larger surface area and higher PbO2 content.Hence,Pyra-Pb anode showed a 40 m V lower anodic potential compared to Cara-Pb and Pb anodes.In sum,Pyra-Pb anode had a potential to decrease energy consumption and prolong the life span of traditional Pb anode.展开更多
基金Project(51704130)supported by the National Natural Science Foundation of ChinaProject(GK-201905)supported by the Research Fund of State Key Laboratory of Rare Metals Separation and Comprehensive Utilization,ChinaProject(jxxjbs16026)supported by the Doctoral Scientific Research Foundation of Jiangxi University of Science and Technology,China
文摘The effects of Pb^2+concentration,current density,deposition time and temperature on Pb deposit structure were investigated.In lower Pb^2+concentration(~0.15 mol/L),carambola-like 3D-Pb structure was constructed,while in higher Pb2+concentration(≥0.30 mol/L),Pb deposits exhibited pyramid-like structure.Furthermore,the oxide layer and anodic potential of carambola-shaped 3D-Pb(Cara-Pb)and pyramid-shaped 3D-Pb(Pyra-Pb)anodes were investigated and compared with those of fresh Pb anode.After 72 h galvanostatic electrolysis(50 mA/cm2)in 160 g/L H2SO4 solution,the oxide layer on Pyra-Pb was much thicker than that on Cara-Pb and Pb anodes,which remarkably relieved intercrystalline corrosion of the metallic substrate.Additionally,the oxide layer on Pyra-Pb anode presented a larger surface area and higher PbO2 content.Hence,Pyra-Pb anode showed a 40 m V lower anodic potential compared to Cara-Pb and Pb anodes.In sum,Pyra-Pb anode had a potential to decrease energy consumption and prolong the life span of traditional Pb anode.