Benzothiazole (BTH) and its derivatives are organic molecules with biologic actions. Because of their many applications, they are produced on a massive scale and used in a number of environmental compartments. Their d...Benzothiazole (BTH) and its derivatives are organic molecules with biologic actions. Because of their many applications, they are produced on a massive scale and used in a number of environmental compartments. Their discharge into water produces environmental problems, exposing our environment to public health problems. A solution that can contribute to their deterioration is becoming a necessity. For this reason, a conceptual analysis of the reactivity of benzothiazole and four of its compounds was undertaken in order to investigate certain aspects of their biodegradability. A theoretical investigations of the compounds studied were conducted in the gas and water phases with the most widely used density functional theory method, Becke-3-Parameter-Lee-Yang-Parr (B3LYP) with 6-31G+ (d, p) basis. Reactivity study calculated global indices of reactivity revealed that 2-SCH3_BTH is the most reactive. Dipole moment values analysis reveals that 2-NH2_BTH is the most soluble in water, while the lipophilicity shows that 2-NH2_BTH is the most hydrophilic compound. Thermodynamic parameters values reflect that reactions are respectively exothermic and spontaneous. By analyzing an Electrostatic Molecular Potential (EMP) map, researchers can pinpoint reactive sites on a molecule and anticipate its reactivity. This assessment is further enhanced by incorporating global and local reactivity descriptors. Additionally, an exploration of frontier molecular orbitals offers valuable insights into the molecule’s charge transfer characteristics. Moreover, a combined examination of internal and external molecular interactions unveils hyperconjugative interactions arising from charge delocalization, as elucidated through natural bond orbital (NBO) analysis.展开更多
The novel carbenoid H2Ge=CLiF was studied by using the DFT B3LYP and QCISD methods. Geometry optimization calculations indicate that H2Ge=CLiF has three equilibrium configurations, in which the three-membered structur...The novel carbenoid H2Ge=CLiF was studied by using the DFT B3LYP and QCISD methods. Geometry optimization calculations indicate that H2Ge=CLiF has three equilibrium configurations, in which the three-membered structure is the lowest in energy and thus the most stable. Two transition states for isomerization reactions of H2Ge=CLiF were located and the energy barriers were calculated. For the most stable one, the vibrational frequencies and infrared intensities were predicted.展开更多
The unsaturated germylenoid H2C=GeLiF has been studied by using DFT method at the B3LYP/6-311+G (d, p) level. Geometry optimization calculations indicate that H2C=GeLiF has three equilibrium configurations, in whic...The unsaturated germylenoid H2C=GeLiF has been studied by using DFT method at the B3LYP/6-311+G (d, p) level. Geometry optimization calculations indicate that H2C=GeLiF has three equilibrium configurations, in which the p-complex is the lowest in energy and the most stable structure. Two transition states for isomerization reactions of H2C=GeLiF are located and the energy barriers are calculated. For the most stable one, vibrational frequencies and infrared intensities have been predicted.展开更多
The ammonia adsorption on the GaN (0001) surface has been investigated by using DFT/B3LYP method combined with the cluster model approach. The dissociative adsorp- tion of NH2 and H is found thermodynamically favored ...The ammonia adsorption on the GaN (0001) surface has been investigated by using DFT/B3LYP method combined with the cluster model approach. The dissociative adsorp- tion of NH2 and H is found thermodynamically favored relative to the molecular NH3 adsorption by decreasing the total energy of 0.95 eV. The adsorption geometries of the molecular and dis- sociative NH3 are given in detail, among which the molecular NH3 bonds to the surface Ga with its lone electronic pair, and the N atom of NH2 adspecies forms the four-fold coordinated N by bridging two surface Ga atoms.展开更多
文摘Benzothiazole (BTH) and its derivatives are organic molecules with biologic actions. Because of their many applications, they are produced on a massive scale and used in a number of environmental compartments. Their discharge into water produces environmental problems, exposing our environment to public health problems. A solution that can contribute to their deterioration is becoming a necessity. For this reason, a conceptual analysis of the reactivity of benzothiazole and four of its compounds was undertaken in order to investigate certain aspects of their biodegradability. A theoretical investigations of the compounds studied were conducted in the gas and water phases with the most widely used density functional theory method, Becke-3-Parameter-Lee-Yang-Parr (B3LYP) with 6-31G+ (d, p) basis. Reactivity study calculated global indices of reactivity revealed that 2-SCH3_BTH is the most reactive. Dipole moment values analysis reveals that 2-NH2_BTH is the most soluble in water, while the lipophilicity shows that 2-NH2_BTH is the most hydrophilic compound. Thermodynamic parameters values reflect that reactions are respectively exothermic and spontaneous. By analyzing an Electrostatic Molecular Potential (EMP) map, researchers can pinpoint reactive sites on a molecule and anticipate its reactivity. This assessment is further enhanced by incorporating global and local reactivity descriptors. Additionally, an exploration of frontier molecular orbitals offers valuable insights into the molecule’s charge transfer characteristics. Moreover, a combined examination of internal and external molecular interactions unveils hyperconjugative interactions arising from charge delocalization, as elucidated through natural bond orbital (NBO) analysis.
文摘The novel carbenoid H2Ge=CLiF was studied by using the DFT B3LYP and QCISD methods. Geometry optimization calculations indicate that H2Ge=CLiF has three equilibrium configurations, in which the three-membered structure is the lowest in energy and thus the most stable. Two transition states for isomerization reactions of H2Ge=CLiF were located and the energy barriers were calculated. For the most stable one, the vibrational frequencies and infrared intensities were predicted.
基金Supported by NNSFC (20473029)the Fund for Doctor of Yantai University (HY05B30)the Open Project Program of Key Laboratory for Supramolecular Structure and Materials of Ministry of Education, Jilin University
文摘The unsaturated germylenoid H2C=GeLiF has been studied by using DFT method at the B3LYP/6-311+G (d, p) level. Geometry optimization calculations indicate that H2C=GeLiF has three equilibrium configurations, in which the p-complex is the lowest in energy and the most stable structure. Two transition states for isomerization reactions of H2C=GeLiF are located and the energy barriers are calculated. For the most stable one, vibrational frequencies and infrared intensities have been predicted.
基金Supported by the National Natural Science Foundation of China (202730313)
文摘The ammonia adsorption on the GaN (0001) surface has been investigated by using DFT/B3LYP method combined with the cluster model approach. The dissociative adsorp- tion of NH2 and H is found thermodynamically favored relative to the molecular NH3 adsorption by decreasing the total energy of 0.95 eV. The adsorption geometries of the molecular and dis- sociative NH3 are given in detail, among which the molecular NH3 bonds to the surface Ga with its lone electronic pair, and the N atom of NH2 adspecies forms the four-fold coordinated N by bridging two surface Ga atoms.