采用原位诱导法制备得到了一系列x Li M_2O_4?(1-x)Li Ni_(1/3)Co_(1/3)Mn_(1/3)O_2(M=Ni,Co,Mn;x=0,0.1,0.2,0.3,0.4,0.5)尖晶石/层状异质结构复合材料。借助X射线衍射、扫描电镜、差示扫描量热仪、恒电流间歇滴定技术和恒电流充放电...采用原位诱导法制备得到了一系列x Li M_2O_4?(1-x)Li Ni_(1/3)Co_(1/3)Mn_(1/3)O_2(M=Ni,Co,Mn;x=0,0.1,0.2,0.3,0.4,0.5)尖晶石/层状异质结构复合材料。借助X射线衍射、扫描电镜、差示扫描量热仪、恒电流间歇滴定技术和恒电流充放电测试表征手段对材料的晶体结构、微观形貌和电化学性能进行了研究。电化学性能结果表明:x=0.2材料的倍率性能和循环性能最佳,在2.7~4.3 V、1C下循环100次后,放电比容量为137 m A?h/g,容量保持率为93%;10C时的放电比容量为112 m A?h/g,相比于原始Li Ni_(1/3)Co_(1/3)Mn_(1/3)O_2材料在10C的放电比容量(95 m A?h/g)有较大提高。此外,快充慢放能力测试也证实了该材料的结构稳定,其在5C充、1C放的充放电机制下,循环100次后的放电比容量还能高达120 m A?h/g,容量保持率为87%。恒电流间歇滴定技术(GITT)的结果表明。x=0.2材料的D_(Li+)值比原始Li Ni_(1/3)Co_(1/3)Mn_(1/3)O_2材料的要高出一个数量级,说明尖晶石相的引入从根本上改善了材料的电化学性能。展开更多
采用高温固相法制备LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2正极材料,并用三氧化二铝(Al_2O_3)进行表面包覆改性。通过XRD、SEM对材料晶体结构、形貌进行分析,用恒流充放电和循环伏安等对材料进行测试。Al_2O_3包覆的LiNi_(1/3)Co_(...采用高温固相法制备LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2正极材料,并用三氧化二铝(Al_2O_3)进行表面包覆改性。通过XRD、SEM对材料晶体结构、形貌进行分析,用恒流充放电和循环伏安等对材料进行测试。Al_2O_3包覆的LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2正极材料具有典型的空间群,为R-3m的六方层状α-Na Fe O2结构。以0.2 C在2.5-4.3 V循环,Al_2O_3包覆量为1%的材料电化学性能最好,首次放电比容量可达145.7 m Ah/g,第30次循环的容量保持率为94.0%,比未包覆Al_2O_3材料在相同条件下的放电比容量提高了6.3%。展开更多
Using oxalic acid and stoichiometrically mixed solution of NiCl2, CoCl2, and MnCl2 as starting materials, the triple oxalate precursor of nickel, cobalt, and manganese was synthesized by liquid-phase co-precipitation ...Using oxalic acid and stoichiometrically mixed solution of NiCl2, CoCl2, and MnCl2 as starting materials, the triple oxalate precursor of nickel, cobalt, and manganese was synthesized by liquid-phase co-precipitation method. And then the LiNi1/3Co1/3Mn1/3O2 cathode materials for Li-ion battery were prepared from the precursor and LiOH·H2O by solid-state reaction. The precursor and LiNi1/3Co1/3Mn1/3O2 were characterized by chemical analysis, XRD, EDX, SEM and TG-DTA. The results show that the composition of precursor is Ni1/3Co1/3Mn1/3C2O4·2H2O. The product LiNi1/3Co1/3Mn1/3O2, in which nickel, cobalt and manganese are uniformly distributed, is well crystallized with a-NaFeO2 layered structure. Sintering temperature has a remarkable influence on the electrochemical performance of obtained samples. LiNi1/3Co1/3Mn1/3O2 synthesized at 900 ℃ has the best electrochemical properties. At 0.1C rate, its first specific discharge capacity is 159.7 mA·h/g in the voltage range of 2.75-4.30 V and 196.9 mA·h/g in the voltage range of 2.75-4.50 V; at 2C rate, its specific discharge capacity is 121.8 mA·h/g and still 119.7 mA·h/g after 40 cycles. The capacity retention ratio is 98.27%.展开更多
文摘采用原位诱导法制备得到了一系列x Li M_2O_4?(1-x)Li Ni_(1/3)Co_(1/3)Mn_(1/3)O_2(M=Ni,Co,Mn;x=0,0.1,0.2,0.3,0.4,0.5)尖晶石/层状异质结构复合材料。借助X射线衍射、扫描电镜、差示扫描量热仪、恒电流间歇滴定技术和恒电流充放电测试表征手段对材料的晶体结构、微观形貌和电化学性能进行了研究。电化学性能结果表明:x=0.2材料的倍率性能和循环性能最佳,在2.7~4.3 V、1C下循环100次后,放电比容量为137 m A?h/g,容量保持率为93%;10C时的放电比容量为112 m A?h/g,相比于原始Li Ni_(1/3)Co_(1/3)Mn_(1/3)O_2材料在10C的放电比容量(95 m A?h/g)有较大提高。此外,快充慢放能力测试也证实了该材料的结构稳定,其在5C充、1C放的充放电机制下,循环100次后的放电比容量还能高达120 m A?h/g,容量保持率为87%。恒电流间歇滴定技术(GITT)的结果表明。x=0.2材料的D_(Li+)值比原始Li Ni_(1/3)Co_(1/3)Mn_(1/3)O_2材料的要高出一个数量级,说明尖晶石相的引入从根本上改善了材料的电化学性能。
文摘采用高温固相法制备LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2正极材料,并用三氧化二铝(Al_2O_3)进行表面包覆改性。通过XRD、SEM对材料晶体结构、形貌进行分析,用恒流充放电和循环伏安等对材料进行测试。Al_2O_3包覆的LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2正极材料具有典型的空间群,为R-3m的六方层状α-Na Fe O2结构。以0.2 C在2.5-4.3 V循环,Al_2O_3包覆量为1%的材料电化学性能最好,首次放电比容量可达145.7 m Ah/g,第30次循环的容量保持率为94.0%,比未包覆Al_2O_3材料在相同条件下的放电比容量提高了6.3%。
文摘Using oxalic acid and stoichiometrically mixed solution of NiCl2, CoCl2, and MnCl2 as starting materials, the triple oxalate precursor of nickel, cobalt, and manganese was synthesized by liquid-phase co-precipitation method. And then the LiNi1/3Co1/3Mn1/3O2 cathode materials for Li-ion battery were prepared from the precursor and LiOH·H2O by solid-state reaction. The precursor and LiNi1/3Co1/3Mn1/3O2 were characterized by chemical analysis, XRD, EDX, SEM and TG-DTA. The results show that the composition of precursor is Ni1/3Co1/3Mn1/3C2O4·2H2O. The product LiNi1/3Co1/3Mn1/3O2, in which nickel, cobalt and manganese are uniformly distributed, is well crystallized with a-NaFeO2 layered structure. Sintering temperature has a remarkable influence on the electrochemical performance of obtained samples. LiNi1/3Co1/3Mn1/3O2 synthesized at 900 ℃ has the best electrochemical properties. At 0.1C rate, its first specific discharge capacity is 159.7 mA·h/g in the voltage range of 2.75-4.30 V and 196.9 mA·h/g in the voltage range of 2.75-4.50 V; at 2C rate, its specific discharge capacity is 121.8 mA·h/g and still 119.7 mA·h/g after 40 cycles. The capacity retention ratio is 98.27%.