This scientific paper is a comparative analysis of two mathematical conjectures. The newly proposed -3(-n) - 1 Remer conjecture and how it is related to and a proof of the more well known 3n + 1 Collatz conjecture. An...This scientific paper is a comparative analysis of two mathematical conjectures. The newly proposed -3(-n) - 1 Remer conjecture and how it is related to and a proof of the more well known 3n + 1 Collatz conjecture. An overview of both conjectures and their respective iterative processes will be presented. Showcasing their unique properties and behavior to each other. Through a detailed comparison, we highlight the similarities and differences between these two conjectures and discuss their significance in the field of mathematics. And how they prove each other to be true.展开更多
In this paper, we use two new effective tools and ingenious methods to prove the 3X + 1 conjecture. By using the recursive method, we firstly prove that any positive integer can be turned into an element of fourth col...In this paper, we use two new effective tools and ingenious methods to prove the 3X + 1 conjecture. By using the recursive method, we firstly prove that any positive integer can be turned into an element of fourth column of the infinite-row-six-column-matrix after a finite times operation, thus we convert “the 3X + 1 conjecture” into an equivalent conjecture, which is: Any positive integer n must become 1 after finite operations under formation of <span style="white-space:nowrap;">σ(<em>n</em>)</span> , where <img src="Edit_dad9267d-3c54-455b-b30e-63819c207e54.png" width="300" height="117" alt="" /> Then, with the help of the infinite-row-four-column-matrix, we continue to use the recursive method to prove this conjecture strictly.展开更多
The 3<em>X</em> + 1 problem (Collatz conjecture) has been proposed for many years, however no major breakthrough has been made so far. As we know, the Crandall conjecture is a well-known generalization of ...The 3<em>X</em> + 1 problem (Collatz conjecture) has been proposed for many years, however no major breakthrough has been made so far. As we know, the Crandall conjecture is a well-known generalization of the 3<em>X</em> + 1 problem. It is worth noting that, both conjectures are infamous for their simplicity in stating but intractability in solving. In this paper, I aim to provide a clear explanation about the reason why these two problems are difficult to handle and have very different characteristics on convergence of the series via creatively applying the probability theory and global expectancy value <em>E</em>(<em>n</em>) of energy contraction index. The corresponding convergence analysis explicitly shows that <em>a</em> = 3 leads to a difficult problem, while <em>a</em> > 3 leads to a divergent series. To the best of my knowledge, this is the first work to point out the difference between these cases. The corresponding results not only propose a new angle to analyze the 3<em>X</em> + 1 problem, but also shed some light on the future research.展开更多
文摘This scientific paper is a comparative analysis of two mathematical conjectures. The newly proposed -3(-n) - 1 Remer conjecture and how it is related to and a proof of the more well known 3n + 1 Collatz conjecture. An overview of both conjectures and their respective iterative processes will be presented. Showcasing their unique properties and behavior to each other. Through a detailed comparison, we highlight the similarities and differences between these two conjectures and discuss their significance in the field of mathematics. And how they prove each other to be true.
文摘In this paper, we use two new effective tools and ingenious methods to prove the 3X + 1 conjecture. By using the recursive method, we firstly prove that any positive integer can be turned into an element of fourth column of the infinite-row-six-column-matrix after a finite times operation, thus we convert “the 3X + 1 conjecture” into an equivalent conjecture, which is: Any positive integer n must become 1 after finite operations under formation of <span style="white-space:nowrap;">σ(<em>n</em>)</span> , where <img src="Edit_dad9267d-3c54-455b-b30e-63819c207e54.png" width="300" height="117" alt="" /> Then, with the help of the infinite-row-four-column-matrix, we continue to use the recursive method to prove this conjecture strictly.
文摘The 3<em>X</em> + 1 problem (Collatz conjecture) has been proposed for many years, however no major breakthrough has been made so far. As we know, the Crandall conjecture is a well-known generalization of the 3<em>X</em> + 1 problem. It is worth noting that, both conjectures are infamous for their simplicity in stating but intractability in solving. In this paper, I aim to provide a clear explanation about the reason why these two problems are difficult to handle and have very different characteristics on convergence of the series via creatively applying the probability theory and global expectancy value <em>E</em>(<em>n</em>) of energy contraction index. The corresponding convergence analysis explicitly shows that <em>a</em> = 3 leads to a difficult problem, while <em>a</em> > 3 leads to a divergent series. To the best of my knowledge, this is the first work to point out the difference between these cases. The corresponding results not only propose a new angle to analyze the 3<em>X</em> + 1 problem, but also shed some light on the future research.