采用氢氧化物共沉淀法和碳酸盐共沉淀法制备4种三元LiNi_(1/3)Mn_(1/3)Co_(1/3)O_2前驱体,然后再采用高温煅烧工艺制得LiNi_(1/3)Mn_(1/3)Co_(1/3)O_2。碳酸盐共沉淀法采用碳酸氢钠作为沉淀剂,氢氧化物共沉淀法分别采用氢氧化钠(正向和...采用氢氧化物共沉淀法和碳酸盐共沉淀法制备4种三元LiNi_(1/3)Mn_(1/3)Co_(1/3)O_2前驱体,然后再采用高温煅烧工艺制得LiNi_(1/3)Mn_(1/3)Co_(1/3)O_2。碳酸盐共沉淀法采用碳酸氢钠作为沉淀剂,氢氧化物共沉淀法分别采用氢氧化钠(正向和逆向加入)、氢氧化钠和氨水作为沉淀剂。通过X射线衍射、扫描电子显微镜、电化学性能测试等方法系统地研究了前驱体制备方法对三元锂离子电池正极材料电性能的影响。结果表明:碳酸盐共沉淀法制得的LiNi_(1/3)Mn_(1/3)Co_(1/3)O_2体颗粒呈现类球形,与有氨水参与的氢氧化物共沉淀法沉淀产物的形貌基本相似。在1 C、3~4.3 V下充放电,不同前驱体制备的LiNi_(1/3)Mn_(1/3)Co_(1/3)O_2首次放电比容量依次为147.0,145.8,140.2,138.1 m A·h/g,循环50周后依次为135.2,131.1,119.3,113.6 m A·h/g,容量保持率为92.0%、89.9%、85.2%、82.1%。展开更多
用溶胶凝胶法制备了Li Ni1/3Co1/3-x Mn1/3Znx O2(x=0,1/24,2/24,4/24)锂离子电池正极材料。由X射线衍射和扫描电镜对其分析结果表明,Zn掺杂不改变Li Ni1/3Co1/3Mn1/3O2的α-Na Fe O2层状结构,当掺杂量达到4/24时,杂相产生。电化学研究...用溶胶凝胶法制备了Li Ni1/3Co1/3-x Mn1/3Znx O2(x=0,1/24,2/24,4/24)锂离子电池正极材料。由X射线衍射和扫描电镜对其分析结果表明,Zn掺杂不改变Li Ni1/3Co1/3Mn1/3O2的α-Na Fe O2层状结构,当掺杂量达到4/24时,杂相产生。电化学研究表明,当Zn掺杂量为2/24时,Li Ni1/3Co1/3Mn1/3O2首次放电容量由未掺杂的169.2 m Ah·g-1降低为160.1m Ah·g-1,但循环性能明显提高,30次循环后的容量保持率由未掺杂的89.2%升至97%。并且在20、40、60和80 m A·g-1不同的电流密度下继续循环20次后,当再次恢复到20 m A·g-1的电流密度时,放电容量可恢复到150.3 m Ah·g-1。展开更多
文摘采用氢氧化物共沉淀法和碳酸盐共沉淀法制备4种三元LiNi_(1/3)Mn_(1/3)Co_(1/3)O_2前驱体,然后再采用高温煅烧工艺制得LiNi_(1/3)Mn_(1/3)Co_(1/3)O_2。碳酸盐共沉淀法采用碳酸氢钠作为沉淀剂,氢氧化物共沉淀法分别采用氢氧化钠(正向和逆向加入)、氢氧化钠和氨水作为沉淀剂。通过X射线衍射、扫描电子显微镜、电化学性能测试等方法系统地研究了前驱体制备方法对三元锂离子电池正极材料电性能的影响。结果表明:碳酸盐共沉淀法制得的LiNi_(1/3)Mn_(1/3)Co_(1/3)O_2体颗粒呈现类球形,与有氨水参与的氢氧化物共沉淀法沉淀产物的形貌基本相似。在1 C、3~4.3 V下充放电,不同前驱体制备的LiNi_(1/3)Mn_(1/3)Co_(1/3)O_2首次放电比容量依次为147.0,145.8,140.2,138.1 m A·h/g,循环50周后依次为135.2,131.1,119.3,113.6 m A·h/g,容量保持率为92.0%、89.9%、85.2%、82.1%。
文摘用溶胶凝胶法制备了Li Ni1/3Co1/3-x Mn1/3Znx O2(x=0,1/24,2/24,4/24)锂离子电池正极材料。由X射线衍射和扫描电镜对其分析结果表明,Zn掺杂不改变Li Ni1/3Co1/3Mn1/3O2的α-Na Fe O2层状结构,当掺杂量达到4/24时,杂相产生。电化学研究表明,当Zn掺杂量为2/24时,Li Ni1/3Co1/3Mn1/3O2首次放电容量由未掺杂的169.2 m Ah·g-1降低为160.1m Ah·g-1,但循环性能明显提高,30次循环后的容量保持率由未掺杂的89.2%升至97%。并且在20、40、60和80 m A·g-1不同的电流密度下继续循环20次后,当再次恢复到20 m A·g-1的电流密度时,放电容量可恢复到150.3 m Ah·g-1。