The isothermal tetragonal-to-monoclinic phase transformation of 3 mol fraction Y2O3-ZrO2 ceramics contain- ing different amounts of Al2O3 during ageing in water at 130℃ for periods of time up to 40 h was investigated...The isothermal tetragonal-to-monoclinic phase transformation of 3 mol fraction Y2O3-ZrO2 ceramics contain- ing different amounts of Al2O3 during ageing in water at 130℃ for periods of time up to 40 h was investigated to explore the effect of Al2O3 addition on this transformation. The propagation of the transformation into the specimen interiors was suppressed by the addition of Al2O3. The transformation kinetics showed a nucleation and growth mechanism on the specimen surface to be dominant in the low temperature ageing in water environment.展开更多
To insight into the B-site ordering in RFe_(0.5)Cr_(0.5)O_(3)ceramics,a series of RFe_(0.5)Cr_(0.5)O_(3)ceramics(R=La,Y,Lu)were synthesized by the sol-gel method,and the structural and magnetic properties were systemi...To insight into the B-site ordering in RFe_(0.5)Cr_(0.5)O_(3)ceramics,a series of RFe_(0.5)Cr_(0.5)O_(3)ceramics(R=La,Y,Lu)were synthesized by the sol-gel method,and the structural and magnetic properties were systemically investigated.By using the Rietveld refinement of all samples,it is found that the structural distortion is increased as the R ionic radius decreases,leading to the weakened interactions between Fe/Cr ions.Moreover,the Fe and Cr are arranged in disorder in LaFe_(0.5)Cr_(0.5)O_(3),but partially ordered in YFe_(0.5)Cr_(0.5)O_(3)and LuFe_(0.5)Cr_(0.5)O_(3),showing an increasing trend of the proportion of ordered domains with the decrease of R ionic radius.Through fitting the temperature-dependent magnetizations,it is identified that the magnetization reversal(MR)in disorder LaFe_(0.5)Cr_(0.5)O_(3)is resulted from the competition between the moments of Cr and Fe sublattices.In the partially ordered YFe_(0.5)Cr_(0.5)O_(3)and LuFe_(0.5)Cr_(0.5)O_(3)ceramics,because of the presence of Fe-O-Cr networks in the ordered domains whose moment is antiparallel to that of Fe-O-Fe and Cr-O-Cr in the disordered domains,the compensation temperature T_(comp)of MR is increased by nearly 50 K.These results suggest that the changing of R-site ions could be used very effectively to modify the Fe-O-Cr ordering,apart from the structural distortion,which has a direct effect on the magnetic exchange interactions in RFe_(0.5)Cr_(0.5)O_(3)ceramics.Then at values of composition where ordered domains are expected to be larger in number as compared to disordered domains and with a weaker structural distortion,one can expect a higher transition temperature Tcomp,providing a different view for adjustment of the magnetic properties of RFe_(0.5)Cr_(0.5)O_(3)ceramics for practical applications.展开更多
To enhance the protective performance of ceramic composite armor,ballistic penetration experiments were conducted on Al_(2)O_(3) ceramic-ultra-high molecular weight polyethylene(UHMWPE)composite armor with different t...To enhance the protective performance of ceramic composite armor,ballistic penetration experiments were conducted on Al_(2)O_(3) ceramic-ultra-high molecular weight polyethylene(UHMWPE)composite armor with different thickness configurations.The damage and failure modes of hard projectiles and ceramic-fiber composite targets were analyzed.The recovered projectiles and ceramic fragments were sieved and weighed at multiple stages,revealing a positive correlation between the degree of fragmentation of the projectiles and ceramics and the overall ballistic resistance of the composite targets.Numerical simulations were performed using the LS-DYNA finite element software,and the simulation results showed high consistency with the experimental results,confirming the validity of the material parameters.The results indicate that the projectile heads primarily exhibited crushing and abrasive fragmentation.Larger projectile fragments mainly resulted from tensile and shear stress-induced failure.The failure modes of the composite targets included the formation of ceramic cones and radial cracks under high-velocity impacts.The UHMWPE laminated plates exhibited interlayer separation caused by tensile waves,permanent plastic deformation of the rear surface bulging,and perforation failure primarily due to shear forces.Through extended numerical simulations,while maintaining the same areal density and configuration of9 mm Al_(2)O_(3) ceramic+12 mm UHMWPE laminated composite armor,the thickness configurations of the Al_(2)O_(3) ceramic and UHMWPE laminated backplates were varied,and various thicknesses of UHMWPE laminates were simulated as the cover layer for the ceramic panels.The simulation results indicated that the composite armor configuration of 10 mm Al_(2)O_(3) ceramic+8 mm UHMWPE composite armor increased energy absorption by13.48%.When altering the cover layer thickness,a 4 mm UHMWPE+9 mm Al_(2)O_(3)+8 mm UHMWPE composite armor demonstrated a 27.11%improvement in energy absorption,showing a relatively significant enhancement.展开更多
Polycrystalline 3Y-TZP/Al2O3 tetragonal zirconia fiber was obtained by the pyrolysis of gel fibers using zirconium oxychloride octahydrate(ZOC) as the raw material. The spinnable zirconia sol was prepared by electro...Polycrystalline 3Y-TZP/Al2O3 tetragonal zirconia fiber was obtained by the pyrolysis of gel fibers using zirconium oxychloride octahydrate(ZOC) as the raw material. The spinnable zirconia sol was prepared by electrolyzing the zirco-nium oxychloride octahydrate(ZOC) solution in the presence of acetic acid and sugar( sucrose, glucrose or fructose) , in which the molar ratios of CH3 COOH/ZOC and sugar/ZOC were 1.0-4.0 and 0.2-0.4, respectively. The pre- pared tetragonal zireonia fibers sintered at different temperatures showed smooth and crack-free surfaces with diame, ters of 5-10 μm. The addition of Al2O3 enhanced the sintering process and prevented the crystals from growing. Thermogravimetric analysis(TG), X-ray diffraction ( XRD ), Fourier transform infrared spectroscopy(FTIR), and scanning electron microscope(SEM) techniques were used to characterize the prepared fibers.展开更多
In order to investigate the effect of sintering temperature on aging properties and mechanical properties of 3Y-TZP dental ceramic in simulated oral environment, 3Y-TZP nanopowder compacts were pressurelessly sintered...In order to investigate the effect of sintering temperature on aging properties and mechanical properties of 3Y-TZP dental ceramic in simulated oral environment, 3Y-TZP nanopowder compacts were pressurelessly sintered at 1 350℃, 1 400 ℃, 1 450 ℃,1 500 ℃, respectively, then were treated by soaking in artificial saliva (65 ℃, pH=7) for two months. The treated specimens sintered at 1 350 ℃ showed there was no phase transformation but whose strength and toughnesswere significantly improved (P〈0.05), while those sintered at 1 400 ℃- 1 500 ℃ revealed a small amount of phase transformation and insignificant mechanical reinforcement (P〉0.05). No microcracks were detected but increment in lattice volume was found in all specimens. Lowering sintering temperature favors aging resistance and mechanical reinforcement of 3Y-TZP in a simulated oral environment.展开更多
Studies on the sintering, microstructure, mechanical properties and low temperature degradation behavior of yttria stabilized-tetragonal zirconia polycrystal (3Y-TZP) were carried out. The results show that the addi...Studies on the sintering, microstructure, mechanical properties and low temperature degradation behavior of yttria stabilized-tetragonal zirconia polycrystal (3Y-TZP) were carried out. The results show that the addition of Al2O3 and MgO improve the sintering at low temperatures, and cause exaggerated grain growth and the transformation of tetragonaI-ZrO2 to monoclinic-ZrO2 with corresponding changes in the mechanical properties. The addition of the yttria-free monoclinic zirconia particles change the overall yttria distribution and induce an active transformation toughening mechanism. Furthermore, the dispersed yttria-free ZrO2 can inhibit the tetragonal zirconia transformation, which is beneficial to the improvement of the low temperature degradation behavior of 3Y- TZP ceramics.展开更多
In the humid oral environment,3Y-TZP ceramics always suffer from low-temperature degradation(LTD)for a long time,which results in the degradation of mechanical properties and catastrophic failure.The low-temperature d...In the humid oral environment,3Y-TZP ceramics always suffer from low-temperature degradation(LTD)for a long time,which results in the degradation of mechanical properties and catastrophic failure.The low-temperature degradation(LTD)and mechanical properties of low-cost tetravalent(Ge^(4+),Ti^(4+))element-doped 3Y-TZP were investigated by analysing grain boundary segregation in samples with deferent contents.The results show that GeO_(2) is superior to TiO_(2) in limiting LTD but results in lower flexural strength and fracture toughness when the content is≥1.5 mol%.This dilemma can be improved by adding only 0.1%-0.5 wt%Al_(2)O_(3),and the flexural strength and fracture toughness of 0.25 wt% Al_(2)O_(3) zirconia are then increased to 898 MPa and 4.68 MPa·m^(1/2) compared with 1Ge-3Y,respectively.This work is expected to provide an effective reference for the development and application of budget dental materials.展开更多
Nanometer 3Y TZP/20%Al 2O 3 (mass fraction) composite powders prepared by the chemical coprecipitation method were pressureless sintered at 1550 ℃ for 2 h. Effects of calcining temperatures at 800 ℃, 1 000 ℃, and 1...Nanometer 3Y TZP/20%Al 2O 3 (mass fraction) composite powders prepared by the chemical coprecipitation method were pressureless sintered at 1550 ℃ for 2 h. Effects of calcining temperatures at 800 ℃, 1 000 ℃, and 1 200 ℃ on phase structure, relative density, and Vicker′s hardness of the sintered bodies were studied. The results show that 1 000 ℃ was the optimal calcining temperature,and the powder calcined was composed of tetragonal zirconia with the Scherrer crystalline size of 6.3 nm. The relative density was up to 98.5% under pressureless sintering, and the sintered body was t ZrO 2(without m ZrO 2)+α Al 2O 3 with the average size of 0.4 μm.展开更多
Al2O3-13%TiO2 (mass fraction) coatings, prepared by laser cladding on nickel-based alloy, were heated using high frequency induction sources. The coating microstructure and the interface between bond coating and cer...Al2O3-13%TiO2 (mass fraction) coatings, prepared by laser cladding on nickel-based alloy, were heated using high frequency induction sources. The coating microstructure and the interface between bond coating and ceramic coating were characterized by SEM, XRD and EDS. The results show that two-layer substructure exists in the ceramic coating: one layer evolving from fully melted region where the sintered grains grow fully; another layer resembling the liquid-phase-sintered structure consisting of three-dimensional net where the melted Al2O3 particles are embedded in the TiO2-rich matrix. The mechanism of the two-layer substructure formation is also explained in terms of the melting and flattening behavior of the powders during laser cladding processing. The spinel compounds NiAl2O4 and acicular compounds Cr2O3 are discovered in the interface between bond coating and ceramic coating. It proves that the chemical reactions in the laser cladding process will significantly enhance the coating adhesion.展开更多
The dielectric properties and phase transition characteristics of La2O3- and Sb2O3-doped barium strontium titanate ceramics prepared by solid state route were investigated. The microstructure was identified by X-ray d...The dielectric properties and phase transition characteristics of La2O3- and Sb2O3-doped barium strontium titanate ceramics prepared by solid state route were investigated. The microstructure was identified by X-ray diffraction method and scanning electron microscope was also employed to observe the surface morphologies. It is found that (La,Sb)-codoped barium strontium titanate ceramics exhibit typical perovskite structure and the average grain size decreases dramatically with increasing the content of Sb2O3. Both La3+ ions and Sb3+ ions occupy the A-sites in perovskite lattice. The dielectric constant and dielectric loss of barium strontium titanate based ceramics are obviously influenced by La2O3 as well as Sb2O3 addition content. The tetragonal-cubic phase transition of La2O3 modified barium strontium titanate ceramics is of second order and the Curie temperature shifts to lower value with increasing the La2O3 doping content. The phase transition of (La,Sb)-codoped barium strontium titanate ceramics diffuses and the deviation from Curie-Weiss law becomes more obvious with the increase in Sb2O3 concentration. The temperature corresponding to the dielectric constant maximum of (La,Sb)-codoped barium strontium titanate ceramics decreases with increasing the Sb2O3 content, which is attributed to the replacement of host ions by the Sb3+ ions.展开更多
The effects of dwell time on the phase structure, microstructure, and electrical properties were investigated for the 0.98(K0.sNa0.5)NbO3-0.02LaFeO3 ceramics (abbreviated as 0.98KNN-0.02LF). All the ceramics sinte...The effects of dwell time on the phase structure, microstructure, and electrical properties were investigated for the 0.98(K0.sNa0.5)NbO3-0.02LaFeO3 ceramics (abbreviated as 0.98KNN-0.02LF). All the ceramics sintered for different dwell time are of pure phase and the peak intensity of the 0.98KNN-0.02LF ceramics becomes stronger with a longer dwell time. Denser microstructures with larger grain size are developed for the sample with a longer dwell time. The maximum dielectric permittivity decreases with increasing the dwell time, and the deteriorative dielectric properties are due to the increasing grain size and the domain wall motion. Ferroelectric properties results indicate that 2Pr value slightly decreases with increasing the dwell time, while the 2Ec value increases. Consequently, the 0.98KNN-0.02LF ceramic sintered at 1150 ℃ for 2 h shows optimum dielectric properties (er=2253 and tan fi〈5%) and ferroelectric properties (2Pr=34.51 gC/cm2 and 2Ec=5.07 kV/mm).展开更多
Er^3+ doped transparent oxyfluoride glass ceramics version and near infrared luminescence behavior of Er^3+ in containing LaF3 nanocrystals were prepared and the up-conglasses heat-treating time and temperature, th...Er^3+ doped transparent oxyfluoride glass ceramics version and near infrared luminescence behavior of Er^3+ in containing LaF3 nanocrystals were prepared and the up-conglasses heat-treating time and temperature, the size (varied from 0 to 19 and glass ceramics were investigated. With increasing nm) and crystallinity (varied from 0 to 47%) of LaF3 nanocrystals in the glass ceramics are increased. The up-conversion luminescence intensity of Er^3+ ions in the glass ceramics is much stronger than that in the glasses The near infrared emission of Er^3+ ions in and increased significantly with increasing heat-treating time and temperature the glass ceramics is found to be similar to that in the glasses.展开更多
yb^3+:Er^3+ co-doped oxy-fluoride ceramics glass has been prepared. The mechanism of up-conversion emissions about Er^3+ was discussed, and the temperature properties of green up-conversion fluorescence between 30...yb^3+:Er^3+ co-doped oxy-fluoride ceramics glass has been prepared. The mechanism of up-conversion emissions about Er^3+ was discussed, and the temperature properties of green up-conversion fluorescence between 303 and 823 K were investigated. The results show that the sensitivity of this sample reaches its maximum value, about 0.0047 K^-1, when the temperature is 383 K, indicating that this kind of sample can be used as high temperature and high sensitivity optical temperature sensor.展开更多
A micromechanical model for elastic behavior analysis of angle-interlock woven ceramic composites is proposed in this paper. This model takes into account the actual fabric structure by considering the fiber undulatio...A micromechanical model for elastic behavior analysis of angle-interlock woven ceramic composites is proposed in this paper. This model takes into account the actual fabric structure by considering the fiber undulation and continuity in space, the cavities between adjacent yarns and the actual cross-section geometry of the yarn. Based on the laminate theory, the elastic properties of 3D angle-interlock woven ceramic composites are predicted. Different numbers of interlaced wefts have almost the same elastic moduli. The thickness of ceramic matrix has little effect on elastic moduli. When the undulation ratio increases longitudinal modulus decreases and the other Young's moduli increase. Good agreement between theoretical predictions and experimental results demonstrates the feasibility of the proposed model in analyzing the elastic properties of 3D angle-interlock woven ceramic composites. The results of this paper verify the fact that the method of analyzing polyester matrix composites is suitable for woven ceramic composites.展开更多
Combining 3D printing with precursor-derived ceramic for fabricating electromagnetic(EM) wave-absorbing metamaterials has attracted great attention. This study presents a novel ultraviolet-curable polysiloxane precurs...Combining 3D printing with precursor-derived ceramic for fabricating electromagnetic(EM) wave-absorbing metamaterials has attracted great attention. This study presents a novel ultraviolet-curable polysiloxane precursor for digital light processing(DLP) 3D printing to fabricate ceramic parts with complex geometry, no cracks and linear shrinkage. Guiding with the principles of impedance matching, attenuation, and effective-medium theory, we design a crosshelix-array metamaterial model based on the complex permittivity constant of precursor-derived ceramics. The corresponding ceramic metamaterials can be successfully prepared by DLP printing and subsequent pyrolysis process, achieving a low reflection coefficient and a wide effective absorption bandwidth in the X-band even under high temperature. This is a general method that can be extended to other bands, which can be realized by merely adjusting the unit structure of meta-materials. This strategy provides a novel and effective avenue to achieve “target-design-fabricating” ceramic metamaterials, and it exposes the downstream applications of highly efficient and broad EM wave-absorbing materials and structures with great potential applications.展开更多
Lu2O3-doped ZnO-Bi2O3-based varistor ceramics samples were prepared by a conventional mixed oxide route and sintered at temperatures in the range of 900-1 000°C,and the microstructures of the varistor ceramics sa...Lu2O3-doped ZnO-Bi2O3-based varistor ceramics samples were prepared by a conventional mixed oxide route and sintered at temperatures in the range of 900-1 000°C,and the microstructures of the varistor ceramics samples were characterized by X-ray diffractometry(XRD)and scanning electron microscopy(SEM);at the same time,the electrical properties and V-I characteristics of the varistor ceramics samples were investigated by a DC parameter instrument for varistors.The results show that the ZnO-Bi2O3-based varistor ceramics with 0.3%Lu2O3(molar fraction)sintered at 950°C exhibit comparatively ideal comprehensive electrical properties.The XRD analysis of the samples shows the presence of ZnO,Bi-rich,spinel Zn7Sb2O12 and Lu2O3-based phases.展开更多
The nanotitanium dioxide (TiO2) photocatalytic and porous ceramic filtering technique is one of the advanced methods to effectively treat organic wastewater. The TiO2 sol doped with Fe^3+ ions was prepared by sol-g...The nanotitanium dioxide (TiO2) photocatalytic and porous ceramic filtering technique is one of the advanced methods to effectively treat organic wastewater. The TiO2 sol doped with Fe^3+ ions was prepared by sol-gel processing. The influences of the process conditions of coating nanophotocatalytic material- Fe^3+-TiO2 film on the surface of porous ceramic filter by dipping-lift method on the performance of porous ceramic filter were studied. The porous ceramic filters have two functions at the same time, filtration and photocatalytic degradation. The results of this study showed that the pH and viscosity of the sol, amount of Fe^3+ ions doped as well as the coating times greatly affect the quality of coating film, the performance parameters and the photocatalytic activity of the porous ceramic filter. When the pH of the sol is 3-4, the viscosity is about 6 mPa.S, the amount of doped Fe^3+ ions is about 2.0 g/L, the porous ceramic filter has been shown to have the best filtering performance and photocatalytic activity. In this condition, the porosity of porous ceramic is about 42.5%, the pore diameter is 8-10μm. The degradation of methyl-orange is 74.76% under lighting for 120 rain.展开更多
The conditions of ZnO-Al2O3 aqueous suspensions and slip casting were optimized to obtain dense green compacts and further to obtain high density ZnO-Al2O3 ceramic composites.The Zeta potential of raw powders was meas...The conditions of ZnO-Al2O3 aqueous suspensions and slip casting were optimized to obtain dense green compacts and further to obtain high density ZnO-Al2O3 ceramic composites.The Zeta potential of raw powders was measured.ZnO and Al2O3 powders have lower Zeta potential than-45 mV commonly at pH 8-10.3 with polyacrylic acid(PAA)added.The influence of pH and the mass fraction of the additives on the stability and fluidity of the suspensions added with PAA and polyethylene glycol(PEG) was investigated by experiments of viscosity and sedimentation.The suspensions have the lowest viscosity and the best stability at pH 9 with 0.2%PAA(mass fraction).The maximum density of green compacts is 66.6%of theoretical density(TD)with compacting and homogeneous green particles.An ultrahigh density sintered compact(>99.6%TD)could be obtained after pressureless sintering at 1 400℃for 2 h.展开更多
The bone regenerative scaffold with the tailored degradation rate matching with the growth rate of the new bone is essential for adolescent bone repair.To satisfy these requirement,we proposed bone tissue scaffolds wi...The bone regenerative scaffold with the tailored degradation rate matching with the growth rate of the new bone is essential for adolescent bone repair.To satisfy these requirement,we proposed bone tissue scaffolds with controlled degradation rate using osteoinductive materials(Ca-P bioceramics),which is expected to present a controllable biodegradation rate for patients who need bone regeneration.Physicochemical properties,porosity,compressive strength and degradation properties of the scaffolds were studied.3D printed Ca-P scaffold(3DS),gas foaming Ca-P scaffold(FS)and autogenous bone(AB)were used in vivo for personalized beagle skull defect repair.Histological results indicated that the 3DS was highly vascularized and well combined with surrounding tissues.FS showed obvious newly formed bone tissues.AB showed the best repair effect,but it was found that AB scaffolds were partially absorbed and degraded.This study indicated that the 3D printed Ca-P bioceramics with tailored biodegradation rate is a promising candidate for personalized skull bone tissue reconstruction.展开更多
文摘The isothermal tetragonal-to-monoclinic phase transformation of 3 mol fraction Y2O3-ZrO2 ceramics contain- ing different amounts of Al2O3 during ageing in water at 130℃ for periods of time up to 40 h was investigated to explore the effect of Al2O3 addition on this transformation. The propagation of the transformation into the specimen interiors was suppressed by the addition of Al2O3. The transformation kinetics showed a nucleation and growth mechanism on the specimen surface to be dominant in the low temperature ageing in water environment.
基金supported by the Natural Science Foundation of Henan Province,China(Grant Nos.232300420353 and 232300420392)the Key Scientific Research Project of Higher Education of Henan Province(Grant No.24B140001)+2 种基金the Doctor Scientific Research Initiate Fund of Anyang Institute of Technology(Grant No.BSJ2022010)the National Basic Research Program of China(Grant No.2009CB939901)the Henan Provincial Science and Technology Research Project(Grant No.232102241016).
文摘To insight into the B-site ordering in RFe_(0.5)Cr_(0.5)O_(3)ceramics,a series of RFe_(0.5)Cr_(0.5)O_(3)ceramics(R=La,Y,Lu)were synthesized by the sol-gel method,and the structural and magnetic properties were systemically investigated.By using the Rietveld refinement of all samples,it is found that the structural distortion is increased as the R ionic radius decreases,leading to the weakened interactions between Fe/Cr ions.Moreover,the Fe and Cr are arranged in disorder in LaFe_(0.5)Cr_(0.5)O_(3),but partially ordered in YFe_(0.5)Cr_(0.5)O_(3)and LuFe_(0.5)Cr_(0.5)O_(3),showing an increasing trend of the proportion of ordered domains with the decrease of R ionic radius.Through fitting the temperature-dependent magnetizations,it is identified that the magnetization reversal(MR)in disorder LaFe_(0.5)Cr_(0.5)O_(3)is resulted from the competition between the moments of Cr and Fe sublattices.In the partially ordered YFe_(0.5)Cr_(0.5)O_(3)and LuFe_(0.5)Cr_(0.5)O_(3)ceramics,because of the presence of Fe-O-Cr networks in the ordered domains whose moment is antiparallel to that of Fe-O-Fe and Cr-O-Cr in the disordered domains,the compensation temperature T_(comp)of MR is increased by nearly 50 K.These results suggest that the changing of R-site ions could be used very effectively to modify the Fe-O-Cr ordering,apart from the structural distortion,which has a direct effect on the magnetic exchange interactions in RFe_(0.5)Cr_(0.5)O_(3)ceramics.Then at values of composition where ordered domains are expected to be larger in number as compared to disordered domains and with a weaker structural distortion,one can expect a higher transition temperature Tcomp,providing a different view for adjustment of the magnetic properties of RFe_(0.5)Cr_(0.5)O_(3)ceramics for practical applications.
基金supported by the National Natural Science Foundation of China(Grant Nos.12172179,U2341244,and 11772160)。
文摘To enhance the protective performance of ceramic composite armor,ballistic penetration experiments were conducted on Al_(2)O_(3) ceramic-ultra-high molecular weight polyethylene(UHMWPE)composite armor with different thickness configurations.The damage and failure modes of hard projectiles and ceramic-fiber composite targets were analyzed.The recovered projectiles and ceramic fragments were sieved and weighed at multiple stages,revealing a positive correlation between the degree of fragmentation of the projectiles and ceramics and the overall ballistic resistance of the composite targets.Numerical simulations were performed using the LS-DYNA finite element software,and the simulation results showed high consistency with the experimental results,confirming the validity of the material parameters.The results indicate that the projectile heads primarily exhibited crushing and abrasive fragmentation.Larger projectile fragments mainly resulted from tensile and shear stress-induced failure.The failure modes of the composite targets included the formation of ceramic cones and radial cracks under high-velocity impacts.The UHMWPE laminated plates exhibited interlayer separation caused by tensile waves,permanent plastic deformation of the rear surface bulging,and perforation failure primarily due to shear forces.Through extended numerical simulations,while maintaining the same areal density and configuration of9 mm Al_(2)O_(3) ceramic+12 mm UHMWPE laminated composite armor,the thickness configurations of the Al_(2)O_(3) ceramic and UHMWPE laminated backplates were varied,and various thicknesses of UHMWPE laminates were simulated as the cover layer for the ceramic panels.The simulation results indicated that the composite armor configuration of 10 mm Al_(2)O_(3) ceramic+8 mm UHMWPE composite armor increased energy absorption by13.48%.When altering the cover layer thickness,a 4 mm UHMWPE+9 mm Al_(2)O_(3)+8 mm UHMWPE composite armor demonstrated a 27.11%improvement in energy absorption,showing a relatively significant enhancement.
基金Supported by National High Technology Research and Development Program of China(No.2002AA2040).
文摘Polycrystalline 3Y-TZP/Al2O3 tetragonal zirconia fiber was obtained by the pyrolysis of gel fibers using zirconium oxychloride octahydrate(ZOC) as the raw material. The spinnable zirconia sol was prepared by electrolyzing the zirco-nium oxychloride octahydrate(ZOC) solution in the presence of acetic acid and sugar( sucrose, glucrose or fructose) , in which the molar ratios of CH3 COOH/ZOC and sugar/ZOC were 1.0-4.0 and 0.2-0.4, respectively. The pre- pared tetragonal zireonia fibers sintered at different temperatures showed smooth and crack-free surfaces with diame, ters of 5-10 μm. The addition of Al2O3 enhanced the sintering process and prevented the crystals from growing. Thermogravimetric analysis(TG), X-ray diffraction ( XRD ), Fourier transform infrared spectroscopy(FTIR), and scanning electron microscope(SEM) techniques were used to characterize the prepared fibers.
基金Funded by the National High Technology Research and Development Program of China (No.2006AA03Z440)
文摘In order to investigate the effect of sintering temperature on aging properties and mechanical properties of 3Y-TZP dental ceramic in simulated oral environment, 3Y-TZP nanopowder compacts were pressurelessly sintered at 1 350℃, 1 400 ℃, 1 450 ℃,1 500 ℃, respectively, then were treated by soaking in artificial saliva (65 ℃, pH=7) for two months. The treated specimens sintered at 1 350 ℃ showed there was no phase transformation but whose strength and toughnesswere significantly improved (P〈0.05), while those sintered at 1 400 ℃- 1 500 ℃ revealed a small amount of phase transformation and insignificant mechanical reinforcement (P〉0.05). No microcracks were detected but increment in lattice volume was found in all specimens. Lowering sintering temperature favors aging resistance and mechanical reinforcement of 3Y-TZP in a simulated oral environment.
基金Supported by "863"High Technology Projects(No. 2002AA332080)
文摘Studies on the sintering, microstructure, mechanical properties and low temperature degradation behavior of yttria stabilized-tetragonal zirconia polycrystal (3Y-TZP) were carried out. The results show that the addition of Al2O3 and MgO improve the sintering at low temperatures, and cause exaggerated grain growth and the transformation of tetragonaI-ZrO2 to monoclinic-ZrO2 with corresponding changes in the mechanical properties. The addition of the yttria-free monoclinic zirconia particles change the overall yttria distribution and induce an active transformation toughening mechanism. Furthermore, the dispersed yttria-free ZrO2 can inhibit the tetragonal zirconia transformation, which is beneficial to the improvement of the low temperature degradation behavior of 3Y- TZP ceramics.
文摘In the humid oral environment,3Y-TZP ceramics always suffer from low-temperature degradation(LTD)for a long time,which results in the degradation of mechanical properties and catastrophic failure.The low-temperature degradation(LTD)and mechanical properties of low-cost tetravalent(Ge^(4+),Ti^(4+))element-doped 3Y-TZP were investigated by analysing grain boundary segregation in samples with deferent contents.The results show that GeO_(2) is superior to TiO_(2) in limiting LTD but results in lower flexural strength and fracture toughness when the content is≥1.5 mol%.This dilemma can be improved by adding only 0.1%-0.5 wt%Al_(2)O_(3),and the flexural strength and fracture toughness of 0.25 wt% Al_(2)O_(3) zirconia are then increased to 898 MPa and 4.68 MPa·m^(1/2) compared with 1Ge-3Y,respectively.This work is expected to provide an effective reference for the development and application of budget dental materials.
文摘Nanometer 3Y TZP/20%Al 2O 3 (mass fraction) composite powders prepared by the chemical coprecipitation method were pressureless sintered at 1550 ℃ for 2 h. Effects of calcining temperatures at 800 ℃, 1 000 ℃, and 1 200 ℃ on phase structure, relative density, and Vicker′s hardness of the sintered bodies were studied. The results show that 1 000 ℃ was the optimal calcining temperature,and the powder calcined was composed of tetragonal zirconia with the Scherrer crystalline size of 6.3 nm. The relative density was up to 98.5% under pressureless sintering, and the sintered body was t ZrO 2(without m ZrO 2)+α Al 2O 3 with the average size of 0.4 μm.
基金Project (59975046) supported by the National Natural Science Foundation of China
文摘Al2O3-13%TiO2 (mass fraction) coatings, prepared by laser cladding on nickel-based alloy, were heated using high frequency induction sources. The coating microstructure and the interface between bond coating and ceramic coating were characterized by SEM, XRD and EDS. The results show that two-layer substructure exists in the ceramic coating: one layer evolving from fully melted region where the sintered grains grow fully; another layer resembling the liquid-phase-sintered structure consisting of three-dimensional net where the melted Al2O3 particles are embedded in the TiO2-rich matrix. The mechanism of the two-layer substructure formation is also explained in terms of the melting and flattening behavior of the powders during laser cladding processing. The spinel compounds NiAl2O4 and acicular compounds Cr2O3 are discovered in the interface between bond coating and ceramic coating. It proves that the chemical reactions in the laser cladding process will significantly enhance the coating adhesion.
基金Project (11KJB430007) supported by the University Natural Science Research Program of Jiangsu Province, ChinaProject supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions, China
文摘The dielectric properties and phase transition characteristics of La2O3- and Sb2O3-doped barium strontium titanate ceramics prepared by solid state route were investigated. The microstructure was identified by X-ray diffraction method and scanning electron microscope was also employed to observe the surface morphologies. It is found that (La,Sb)-codoped barium strontium titanate ceramics exhibit typical perovskite structure and the average grain size decreases dramatically with increasing the content of Sb2O3. Both La3+ ions and Sb3+ ions occupy the A-sites in perovskite lattice. The dielectric constant and dielectric loss of barium strontium titanate based ceramics are obviously influenced by La2O3 as well as Sb2O3 addition content. The tetragonal-cubic phase transition of La2O3 modified barium strontium titanate ceramics is of second order and the Curie temperature shifts to lower value with increasing the La2O3 doping content. The phase transition of (La,Sb)-codoped barium strontium titanate ceramics diffuses and the deviation from Curie-Weiss law becomes more obvious with the increase in Sb2O3 concentration. The temperature corresponding to the dielectric constant maximum of (La,Sb)-codoped barium strontium titanate ceramics decreases with increasing the Sb2O3 content, which is attributed to the replacement of host ions by the Sb3+ ions.
基金Project(CX201108)supported by the Doctorate Foundation of Northwestern Polytechnical University,ChinaProject(51072165)supported by the National Natural Science Foundation of ChinaProjects(KP200901,SKLSP201104)supported by the Fund of State Key Laboratory of Solidification Processing in NWPU,China
文摘The effects of dwell time on the phase structure, microstructure, and electrical properties were investigated for the 0.98(K0.sNa0.5)NbO3-0.02LaFeO3 ceramics (abbreviated as 0.98KNN-0.02LF). All the ceramics sintered for different dwell time are of pure phase and the peak intensity of the 0.98KNN-0.02LF ceramics becomes stronger with a longer dwell time. Denser microstructures with larger grain size are developed for the sample with a longer dwell time. The maximum dielectric permittivity decreases with increasing the dwell time, and the deteriorative dielectric properties are due to the increasing grain size and the domain wall motion. Ferroelectric properties results indicate that 2Pr value slightly decreases with increasing the dwell time, while the 2Ec value increases. Consequently, the 0.98KNN-0.02LF ceramic sintered at 1150 ℃ for 2 h shows optimum dielectric properties (er=2253 and tan fi〈5%) and ferroelectric properties (2Pr=34.51 gC/cm2 and 2Ec=5.07 kV/mm).
文摘Er^3+ doped transparent oxyfluoride glass ceramics version and near infrared luminescence behavior of Er^3+ in containing LaF3 nanocrystals were prepared and the up-conglasses heat-treating time and temperature, the size (varied from 0 to 19 and glass ceramics were investigated. With increasing nm) and crystallinity (varied from 0 to 47%) of LaF3 nanocrystals in the glass ceramics are increased. The up-conversion luminescence intensity of Er^3+ ions in the glass ceramics is much stronger than that in the glasses The near infrared emission of Er^3+ ions in and increased significantly with increasing heat-treating time and temperature the glass ceramics is found to be similar to that in the glasses.
基金Project supported by the National Natural Science Foundation of China (Grant No. 10804015 )the Science Foundation of the Education Department of Liaoning Province of China (Grant No. 2009A417)
文摘yb^3+:Er^3+ co-doped oxy-fluoride ceramics glass has been prepared. The mechanism of up-conversion emissions about Er^3+ was discussed, and the temperature properties of green up-conversion fluorescence between 303 and 823 K were investigated. The results show that the sensitivity of this sample reaches its maximum value, about 0.0047 K^-1, when the temperature is 383 K, indicating that this kind of sample can be used as high temperature and high sensitivity optical temperature sensor.
基金Project supported by the National Natural Science Foundation of China (No.90405015)
文摘A micromechanical model for elastic behavior analysis of angle-interlock woven ceramic composites is proposed in this paper. This model takes into account the actual fabric structure by considering the fiber undulation and continuity in space, the cavities between adjacent yarns and the actual cross-section geometry of the yarn. Based on the laminate theory, the elastic properties of 3D angle-interlock woven ceramic composites are predicted. Different numbers of interlaced wefts have almost the same elastic moduli. The thickness of ceramic matrix has little effect on elastic moduli. When the undulation ratio increases longitudinal modulus decreases and the other Young's moduli increase. Good agreement between theoretical predictions and experimental results demonstrates the feasibility of the proposed model in analyzing the elastic properties of 3D angle-interlock woven ceramic composites. The results of this paper verify the fact that the method of analyzing polyester matrix composites is suitable for woven ceramic composites.
基金supported by the National Science Fund for Distinguished Young Scholars(52025034)National Natural Science Foundation of China(21975204)Innovation Team of Shaanxi Sanqin Scholars。
文摘Combining 3D printing with precursor-derived ceramic for fabricating electromagnetic(EM) wave-absorbing metamaterials has attracted great attention. This study presents a novel ultraviolet-curable polysiloxane precursor for digital light processing(DLP) 3D printing to fabricate ceramic parts with complex geometry, no cracks and linear shrinkage. Guiding with the principles of impedance matching, attenuation, and effective-medium theory, we design a crosshelix-array metamaterial model based on the complex permittivity constant of precursor-derived ceramics. The corresponding ceramic metamaterials can be successfully prepared by DLP printing and subsequent pyrolysis process, achieving a low reflection coefficient and a wide effective absorption bandwidth in the X-band even under high temperature. This is a general method that can be extended to other bands, which can be realized by merely adjusting the unit structure of meta-materials. This strategy provides a novel and effective avenue to achieve “target-design-fabricating” ceramic metamaterials, and it exposes the downstream applications of highly efficient and broad EM wave-absorbing materials and structures with great potential applications.
基金Project(50902061)supported by the National Natural Science Foundation of ChinaProject(2011-22)supported by the State Key Laboratory of Inorganic Synthesis and Preparative Chemistry of Jilin University,China+3 种基金Project(20100471380)supported by the China Postdoctoral Science FoundationProject(J50102)supported by the Leading Academic Discipline Program of Shanghai Municipal Education Commission,ChinaProject(10KJD430002)supported by the Universities Natural Science Research Program of Jiangsu Province,ChinaProject(2010002)supported by the Jiangsu University Undergraduate Practice-Innovation Training Program,China
文摘Lu2O3-doped ZnO-Bi2O3-based varistor ceramics samples were prepared by a conventional mixed oxide route and sintered at temperatures in the range of 900-1 000°C,and the microstructures of the varistor ceramics samples were characterized by X-ray diffractometry(XRD)and scanning electron microscopy(SEM);at the same time,the electrical properties and V-I characteristics of the varistor ceramics samples were investigated by a DC parameter instrument for varistors.The results show that the ZnO-Bi2O3-based varistor ceramics with 0.3%Lu2O3(molar fraction)sintered at 950°C exhibit comparatively ideal comprehensive electrical properties.The XRD analysis of the samples shows the presence of ZnO,Bi-rich,spinel Zn7Sb2O12 and Lu2O3-based phases.
文摘The nanotitanium dioxide (TiO2) photocatalytic and porous ceramic filtering technique is one of the advanced methods to effectively treat organic wastewater. The TiO2 sol doped with Fe^3+ ions was prepared by sol-gel processing. The influences of the process conditions of coating nanophotocatalytic material- Fe^3+-TiO2 film on the surface of porous ceramic filter by dipping-lift method on the performance of porous ceramic filter were studied. The porous ceramic filters have two functions at the same time, filtration and photocatalytic degradation. The results of this study showed that the pH and viscosity of the sol, amount of Fe^3+ ions doped as well as the coating times greatly affect the quality of coating film, the performance parameters and the photocatalytic activity of the porous ceramic filter. When the pH of the sol is 3-4, the viscosity is about 6 mPa.S, the amount of doped Fe^3+ ions is about 2.0 g/L, the porous ceramic filter has been shown to have the best filtering performance and photocatalytic activity. In this condition, the porosity of porous ceramic is about 42.5%, the pore diameter is 8-10μm. The degradation of methyl-orange is 74.76% under lighting for 120 rain.
基金Project(50477044)supported by the National Natural Science Foundation of China
文摘The conditions of ZnO-Al2O3 aqueous suspensions and slip casting were optimized to obtain dense green compacts and further to obtain high density ZnO-Al2O3 ceramic composites.The Zeta potential of raw powders was measured.ZnO and Al2O3 powders have lower Zeta potential than-45 mV commonly at pH 8-10.3 with polyacrylic acid(PAA)added.The influence of pH and the mass fraction of the additives on the stability and fluidity of the suspensions added with PAA and polyethylene glycol(PEG) was investigated by experiments of viscosity and sedimentation.The suspensions have the lowest viscosity and the best stability at pH 9 with 0.2%PAA(mass fraction).The maximum density of green compacts is 66.6%of theoretical density(TD)with compacting and homogeneous green particles.An ultrahigh density sintered compact(>99.6%TD)could be obtained after pressureless sintering at 1 400℃for 2 h.
基金This work was supported by the National Key Research and Development Program of China(No.18YFB1105600,2018YFC1106800)National Natural Science Foundation of China(51875518)+1 种基金Sichuan Province Science&Technology Department Projects(2016CZYD0004,2017SZ0001,2018GZ0142,2019YFH0079)Research Foundation for Young Teachers of Sichuan University(2018SCUH0017)and The“111”Project(No.B16033).
文摘The bone regenerative scaffold with the tailored degradation rate matching with the growth rate of the new bone is essential for adolescent bone repair.To satisfy these requirement,we proposed bone tissue scaffolds with controlled degradation rate using osteoinductive materials(Ca-P bioceramics),which is expected to present a controllable biodegradation rate for patients who need bone regeneration.Physicochemical properties,porosity,compressive strength and degradation properties of the scaffolds were studied.3D printed Ca-P scaffold(3DS),gas foaming Ca-P scaffold(FS)and autogenous bone(AB)were used in vivo for personalized beagle skull defect repair.Histological results indicated that the 3DS was highly vascularized and well combined with surrounding tissues.FS showed obvious newly formed bone tissues.AB showed the best repair effect,but it was found that AB scaffolds were partially absorbed and degraded.This study indicated that the 3D printed Ca-P bioceramics with tailored biodegradation rate is a promising candidate for personalized skull bone tissue reconstruction.