The interaction between Zn-AI eutectic alloy and Al203p/6061AI composites in the vacuum furnace was investigated. Great attention has been paid to the elements diffusion, the microstructure and formation of the interf...The interaction between Zn-AI eutectic alloy and Al203p/6061AI composites in the vacuum furnace was investigated. Great attention has been paid to the elements diffusion, the microstructure and formation of the interface between Zn-AI eutectic alloy and Al2O3p/6061AI composites. Experimental results show that Zn-AI eutectic alloy has a good wetting ability to Al2O3p/6061 Al composites and the wetting angle decreases with increasing the temperature in vacuum. After the interaction, an interaction layer forms between Zn-AI alloy and Al2O3p/6061 Al composites. The phases in the interaction layer mainly consist of α-AI(Zn), Al2O3 and CuZn5 resulted from the diffusion of elements from the Zn-AI alloy. Several porosities distribute in the region near the interface of the Zn-AI alloy/interaction layer. The amount of shrinkage voids in the interacting layer is relevant to the penetration of Zn element into Al2O3p/6061Al composites which is a function of temperature. So it is necessary to lower heating temperature in order to limit the Zn penetration.展开更多
Interaction behaviors between Al-Si, Zn-Al alloys and Al2O)3p)/6061Al composite at different heating temperatures were investigated. It is found that Al2O)3p)/6061Al composite can be wetted well by AlSi-1, AlSi-4 and ...Interaction behaviors between Al-Si, Zn-Al alloys and Al2O)3p)/6061Al composite at different heating temperatures were investigated. It is found that Al2O)3p)/6061Al composite can be wetted well by AlSi-1, AlSi-4 and Zn-Al alloys and an interaction layer forms between the alloy and composite during interaction. Little Al-Si alloys remain on the surface when they fully wet the composite and Si element in Al-Si alloy diffuses into composite entirely and assembles in the composite near the interface of Al-Si alloy/composite to form a Si-rich zone. The microstructure in interaction layer with Si penetration is still dense. Much more residual Zn-Al alloy exists on the surface of composite when it wets the composite, and porosities appear at the interface of Zn-Al alloy/composite. The penetration of elements Zn, Cu of Zn-Al alloy into composite leads to the generation of shrinkage cavities in the interaction layer and makes the microstructure of Al2O)3p)/6061Al composite loose.展开更多
An aluminum alloy (6061) matrix composite reinforced with 35% (vol.) Al 2O 3 particles was fabricated by squeeze casting method. The Al 2O 3 particles were spherical. The microyield behavior of the composite and t...An aluminum alloy (6061) matrix composite reinforced with 35% (vol.) Al 2O 3 particles was fabricated by squeeze casting method. The Al 2O 3 particles were spherical. The microyield behavior of the composite and the effect of different thermal cycling treatment on the microyield behaviors of the composite were studied. Based on TEM and HREM observation of microstructure, the mechanism of microyield behavior in the Al 2O 3p/6061 composite was analyzed. The results indicate that the microyield behavior of the Al 2O 3p/6061 composite can be described by Brown Lukens theory, which was used satisfactorily for aluminum alloys and other light alloys, and is affected greatly by the different thermal cycling treatment. The more the cycles of thermal cycling treatment, the higher to microyield strength at small strains. Thermal cycling treatment affects mainly the thermal mismatch stress and the density of movable dislocations in the matrix.展开更多
Non-interlayer liquid phase diffusion welding (China Patent) and laser welding methods for aluminum matrix composite are mainly described in this paper. In the non-interlayer liquid phase diffusion welding, the key pr...Non-interlayer liquid phase diffusion welding (China Patent) and laser welding methods for aluminum matrix composite are mainly described in this paper. In the non-interlayer liquid phase diffusion welding, the key processing parameters affecting the strength of joint is welding temperature. When temperature rises beyond solidus temperature, the bonded line vanishes. The strength of joint reaches the maximum and becomes constant when welding temperature is close to liquid phase temperature. Oxide film in the interface is no longer detected by SEM in the welded joint. With this kind of technique, particle reinforced aluminum matrix composite Al2 O3p/6061Al is welded successfully, and the joint strength is about 80% of the strength of composite (as-casted). In the laser welding, results indicate that because of the huge specific surface area of the reinforcement, the interfacial reaction between the matrix and the reinforcement is restrained intensively at certain laser power and pulsed laser beam. The laser pulse frequency directly affects the reinforcement segregation and the reinforcement distribution in the weld, so that the weldability of the composite could be improved by increasing the laser pulse frequency. The maximum strength of the weld can reach 70% of the strength of the parent.展开更多
文摘The interaction between Zn-AI eutectic alloy and Al203p/6061AI composites in the vacuum furnace was investigated. Great attention has been paid to the elements diffusion, the microstructure and formation of the interface between Zn-AI eutectic alloy and Al2O3p/6061AI composites. Experimental results show that Zn-AI eutectic alloy has a good wetting ability to Al2O3p/6061 Al composites and the wetting angle decreases with increasing the temperature in vacuum. After the interaction, an interaction layer forms between Zn-AI alloy and Al2O3p/6061 Al composites. The phases in the interaction layer mainly consist of α-AI(Zn), Al2O3 and CuZn5 resulted from the diffusion of elements from the Zn-AI alloy. Several porosities distribute in the region near the interface of the Zn-AI alloy/interaction layer. The amount of shrinkage voids in the interacting layer is relevant to the penetration of Zn element into Al2O3p/6061Al composites which is a function of temperature. So it is necessary to lower heating temperature in order to limit the Zn penetration.
文摘Interaction behaviors between Al-Si, Zn-Al alloys and Al2O)3p)/6061Al composite at different heating temperatures were investigated. It is found that Al2O)3p)/6061Al composite can be wetted well by AlSi-1, AlSi-4 and Zn-Al alloys and an interaction layer forms between the alloy and composite during interaction. Little Al-Si alloys remain on the surface when they fully wet the composite and Si element in Al-Si alloy diffuses into composite entirely and assembles in the composite near the interface of Al-Si alloy/composite to form a Si-rich zone. The microstructure in interaction layer with Si penetration is still dense. Much more residual Zn-Al alloy exists on the surface of composite when it wets the composite, and porosities appear at the interface of Zn-Al alloy/composite. The penetration of elements Zn, Cu of Zn-Al alloy into composite leads to the generation of shrinkage cavities in the interaction layer and makes the microstructure of Al2O)3p)/6061Al composite loose.
文摘An aluminum alloy (6061) matrix composite reinforced with 35% (vol.) Al 2O 3 particles was fabricated by squeeze casting method. The Al 2O 3 particles were spherical. The microyield behavior of the composite and the effect of different thermal cycling treatment on the microyield behaviors of the composite were studied. Based on TEM and HREM observation of microstructure, the mechanism of microyield behavior in the Al 2O 3p/6061 composite was analyzed. The results indicate that the microyield behavior of the Al 2O 3p/6061 composite can be described by Brown Lukens theory, which was used satisfactorily for aluminum alloys and other light alloys, and is affected greatly by the different thermal cycling treatment. The more the cycles of thermal cycling treatment, the higher to microyield strength at small strains. Thermal cycling treatment affects mainly the thermal mismatch stress and the density of movable dislocations in the matrix.
基金supported by the National Natural Science Foundation of China(No.50171025)open project of foundation of National Key Laboratory of Metal Matrix Composite,Shanghai Jiaotong University
文摘Non-interlayer liquid phase diffusion welding (China Patent) and laser welding methods for aluminum matrix composite are mainly described in this paper. In the non-interlayer liquid phase diffusion welding, the key processing parameters affecting the strength of joint is welding temperature. When temperature rises beyond solidus temperature, the bonded line vanishes. The strength of joint reaches the maximum and becomes constant when welding temperature is close to liquid phase temperature. Oxide film in the interface is no longer detected by SEM in the welded joint. With this kind of technique, particle reinforced aluminum matrix composite Al2 O3p/6061Al is welded successfully, and the joint strength is about 80% of the strength of composite (as-casted). In the laser welding, results indicate that because of the huge specific surface area of the reinforcement, the interfacial reaction between the matrix and the reinforcement is restrained intensively at certain laser power and pulsed laser beam. The laser pulse frequency directly affects the reinforcement segregation and the reinforcement distribution in the weld, so that the weldability of the composite could be improved by increasing the laser pulse frequency. The maximum strength of the weld can reach 70% of the strength of the parent.