The paper summarizes the development of mobile communication of domestic and foreign railways,and proposes the priorities for tackling key technological problems of railway 5G private network according to the technica...The paper summarizes the development of mobile communication of domestic and foreign railways,and proposes the priorities for tackling key technological problems of railway 5G private network according to the technical routes of railway next-generation mobile communication determined by China State Railway Group Co.,Ltd.From the aspects of work objectives,principles,technical routes and innovative working methods,the paper elaborates the ideas of railway 5G scientific and technological research,puts forward the contents and plans of scientific and technological research on railway 5G private network,systematically organizes the achievements in the scientific and technological research stage of railway 5G private network,and sets forth the key contents of next-step scientific and technological research.展开更多
We investigate the design of satellite network slicing for the first time to provide customized services for the diversified applications,and propose a novel scheme for satellite end-to-end(E2E) network slicing based ...We investigate the design of satellite network slicing for the first time to provide customized services for the diversified applications,and propose a novel scheme for satellite end-to-end(E2E) network slicing based on 5G technology,which provides a view of common satellite network slicing and supports flexible network deployment between the satellite and the ground.Specifically,considering the limited satellite network resource and the characteristics of the satellite channel,we propose a novel satellite E2E network slicing architecture.Therein,the deployment of the network functions between the satellite and the ground is coordinately considered.Subsequently,the classification and the isolation technologies of satellite network sub-slices are proposed adaptively based on 5G technology to support resource allocation on demand.Then,we develop the management technologies for the satellite E2E network slicing including slicing key performance indicator(KPI) design,slicing deployment,and slicing management.Finally,the analysis of the challenges and future work shows the potential research in the future.展开更多
Mobile cellular data networks have allowed users to access the Internet whilst on the move. Many companies use this technology in their products. Examples of this would be Smart Meters in the home and Tesla cars havin...Mobile cellular data networks have allowed users to access the Internet whilst on the move. Many companies use this technology in their products. Examples of this would be Smart Meters in the home and Tesla cars having their “over the air updates”. Both of these two companies use the 4G and 5G technology. So this report will include a technical overview of the technology and protocols (LTE Advanced) used in 4G and 5G networks and how they provide services to the user and how data is transferred within the networks. And there are lots of different parts about the network architecture between the 4G and 5G systems. This report will talk about some different parts between these two systems and some challenges in them.展开更多
With the arrival of the 4G and 5G,the telecommunications networks have experienced a large expansion of these networks.That enabled the integration of many services and adequate flow,thus enabling the operators to res...With the arrival of the 4G and 5G,the telecommunications networks have experienced a large expansion of these networks.That enabled the integration of many services and adequate flow,thus enabling the operators to respond to the growing demand of users.This rapid evolution has given the operators to adapt,their methods to the new technologies that increase.This complexity becomes more important,when these networks include several technologies to access different from the heterogeneous network like in the 4G network.The dimensional new challenges tell the application and the considerable increase in demand for services and the compatibility with existing networks,the management of mobility intercellular of users and it offers a better quality of services.Thus,the proposed solution to meet these new requirements is the sizing of the EPC(Evolved Packet Core)core network to support the 5G access network.For the case of Orange Guinea,this involves setting up an architecture for interconnecting the core networks of Sonfonia and Camayenne.The objectives of our work are of two orders:(1)to propose these solutions and recommendations for the heart network EPC sizing and the deployment to be adopted;(2)supply and architectural interconnection in the heart network EPC and an existing heart network.In our work,the model of traffic in communication that we use to calculate the traffic generated with each technology has link in the network of the heart.展开更多
With the continuous enrichment of mobile communication application scenarios in the future, the traditional macro-cellular-based mobile communication network architecture will be difficult to meet the explosive growth...With the continuous enrichment of mobile communication application scenarios in the future, the traditional macro-cellular-based mobile communication network architecture will be difficult to meet the explosive growth in demand for communications services.展开更多
With rising capacity demand in mobile networks, the infrastructure is also becoming increasingly denser and complex. This results in collection of larger amount of raw data(big data) that is generated at different lev...With rising capacity demand in mobile networks, the infrastructure is also becoming increasingly denser and complex. This results in collection of larger amount of raw data(big data) that is generated at different levels of network architecture and is typically underutilized. To unleash its full value, innovative machine learning algorithms need to be utilized in order to extract valuable insights which can be used for improving the overall network's performance. Additionally, a major challenge for network operators is to cope up with increasing number of complete(or partial) cell outages and to simultaneously reduce operational expenditure. This paper contributes towards the aforementioned problems by exploiting big data generated from the core network of 4 G LTE-A to detect network's anomalous behavior. We present a semi-supervised statistical-based anomaly detection technique to identify in time: first, unusually low user activity region depicting sleeping cell, which is a special case of cell outage; and second, unusually high user traffic area corresponding to a situation where special action such as additional resource allocation, fault avoidance solution etc. may be needed. Achieved results demonstrate that the proposed method can be used for timely and reliable anomaly detection in current and future cellular networks.展开更多
To improve the quality of education,the application of various forms of teaching and learning tools supported by technology is becoming increasingly widespread in education.Especially the internet communication and te...To improve the quality of education,the application of various forms of teaching and learning tools supported by technology is becoming increasingly widespread in education.Especially the internet communication and technology are changing the education era swiftly with the advent of fifth-generation technology.Research about blended learning(BL)based on 5G networks is emerging.However,few studies have explained how 5G network technology helps the BL teaching model be better applied to teaching.Therefore,this paper tries to sort out the development process of BL teaching mode,summarize the challenges of BL learning in teaching,and explore how the development of the 5G era will positively impact BL teaching mode.展开更多
It has been an exciting journey since the mobile communications and artificial intelligence(AI)were conceived in 1983 and 1956.While both fields evolved independently and profoundly changed communications and computin...It has been an exciting journey since the mobile communications and artificial intelligence(AI)were conceived in 1983 and 1956.While both fields evolved independently and profoundly changed communications and computing industries,the rapid convergence of 5th generation mobile communication technology(5G)and AI is beginning to significantly transform the core communication infrastructure,network management,and vertical applications.The paper first outlined the individual roadmaps of mobile communications and AI in the early stage,with a concentration to review the era from 3rd generation mobile communication technology(3G)to 5G when AI and mobile communications started to converge.With regard to telecommunications AI,the progress of AI in the ecosystem of mobile communications was further introduced in detail,including network infrastructure,network operation and management,business operation and management,intelligent applications towards business supporting system(BSS)&operation supporting system(OSS)convergence,verticals and private networks,etc.Then the classifications of AI in telecommunication ecosystems were summarized along with its evolution paths specified by various international telecommunications standardization organizations.Towards the next decade,the prospective roadmap of telecommunications AI was forecasted.In line with 3rd generation partnership project(3GPP)and International Telecommunication Union Radiocommunication Sector(ITU-R)timeline of 5G&6th generation mobile communication technology(6G),the network intelligence following 3GPP and open radio access network(O-RAN)routes,experience and intent-based network management and operation,network AI signaling system,intelligent middle-office based BSS,intelligent customer experience management and policy control driven by BSS&OSS convergence,evolution from service level agreement(SLA)to experience level agreement(ELA),and intelligent private network for verticals were further explored.The paper is concluded with the vision that AI will reshape the future beyond 5G(B5G)/6G landscape,and we need pivot our research and development(R&D),standardizations,and ecosystem to fully take the unprecedented opportunities.展开更多
文摘The paper summarizes the development of mobile communication of domestic and foreign railways,and proposes the priorities for tackling key technological problems of railway 5G private network according to the technical routes of railway next-generation mobile communication determined by China State Railway Group Co.,Ltd.From the aspects of work objectives,principles,technical routes and innovative working methods,the paper elaborates the ideas of railway 5G scientific and technological research,puts forward the contents and plans of scientific and technological research on railway 5G private network,systematically organizes the achievements in the scientific and technological research stage of railway 5G private network,and sets forth the key contents of next-step scientific and technological research.
文摘We investigate the design of satellite network slicing for the first time to provide customized services for the diversified applications,and propose a novel scheme for satellite end-to-end(E2E) network slicing based on 5G technology,which provides a view of common satellite network slicing and supports flexible network deployment between the satellite and the ground.Specifically,considering the limited satellite network resource and the characteristics of the satellite channel,we propose a novel satellite E2E network slicing architecture.Therein,the deployment of the network functions between the satellite and the ground is coordinately considered.Subsequently,the classification and the isolation technologies of satellite network sub-slices are proposed adaptively based on 5G technology to support resource allocation on demand.Then,we develop the management technologies for the satellite E2E network slicing including slicing key performance indicator(KPI) design,slicing deployment,and slicing management.Finally,the analysis of the challenges and future work shows the potential research in the future.
文摘Mobile cellular data networks have allowed users to access the Internet whilst on the move. Many companies use this technology in their products. Examples of this would be Smart Meters in the home and Tesla cars having their “over the air updates”. Both of these two companies use the 4G and 5G technology. So this report will include a technical overview of the technology and protocols (LTE Advanced) used in 4G and 5G networks and how they provide services to the user and how data is transferred within the networks. And there are lots of different parts about the network architecture between the 4G and 5G systems. This report will talk about some different parts between these two systems and some challenges in them.
文摘With the arrival of the 4G and 5G,the telecommunications networks have experienced a large expansion of these networks.That enabled the integration of many services and adequate flow,thus enabling the operators to respond to the growing demand of users.This rapid evolution has given the operators to adapt,their methods to the new technologies that increase.This complexity becomes more important,when these networks include several technologies to access different from the heterogeneous network like in the 4G network.The dimensional new challenges tell the application and the considerable increase in demand for services and the compatibility with existing networks,the management of mobility intercellular of users and it offers a better quality of services.Thus,the proposed solution to meet these new requirements is the sizing of the EPC(Evolved Packet Core)core network to support the 5G access network.For the case of Orange Guinea,this involves setting up an architecture for interconnecting the core networks of Sonfonia and Camayenne.The objectives of our work are of two orders:(1)to propose these solutions and recommendations for the heart network EPC sizing and the deployment to be adopted;(2)supply and architectural interconnection in the heart network EPC and an existing heart network.In our work,the model of traffic in communication that we use to calculate the traffic generated with each technology has link in the network of the heart.
文摘With the continuous enrichment of mobile communication application scenarios in the future, the traditional macro-cellular-based mobile communication network architecture will be difficult to meet the explosive growth in demand for communications services.
基金supported in part by the National Natural Science Foundation of China under the Grants No.61431011 and 61671371the National Science and Technology Major Project under Grant no.2016ZX03001016-005+1 种基金the Key Research and Development Program of Shaanxi Province under Grant No.2017ZDXM-G-Y-012the Fundamental Research Funds for the Central Universities
文摘With rising capacity demand in mobile networks, the infrastructure is also becoming increasingly denser and complex. This results in collection of larger amount of raw data(big data) that is generated at different levels of network architecture and is typically underutilized. To unleash its full value, innovative machine learning algorithms need to be utilized in order to extract valuable insights which can be used for improving the overall network's performance. Additionally, a major challenge for network operators is to cope up with increasing number of complete(or partial) cell outages and to simultaneously reduce operational expenditure. This paper contributes towards the aforementioned problems by exploiting big data generated from the core network of 4 G LTE-A to detect network's anomalous behavior. We present a semi-supervised statistical-based anomaly detection technique to identify in time: first, unusually low user activity region depicting sleeping cell, which is a special case of cell outage; and second, unusually high user traffic area corresponding to a situation where special action such as additional resource allocation, fault avoidance solution etc. may be needed. Achieved results demonstrate that the proposed method can be used for timely and reliable anomaly detection in current and future cellular networks.
文摘To improve the quality of education,the application of various forms of teaching and learning tools supported by technology is becoming increasingly widespread in education.Especially the internet communication and technology are changing the education era swiftly with the advent of fifth-generation technology.Research about blended learning(BL)based on 5G networks is emerging.However,few studies have explained how 5G network technology helps the BL teaching model be better applied to teaching.Therefore,this paper tries to sort out the development process of BL teaching mode,summarize the challenges of BL learning in teaching,and explore how the development of the 5G era will positively impact BL teaching mode.
文摘It has been an exciting journey since the mobile communications and artificial intelligence(AI)were conceived in 1983 and 1956.While both fields evolved independently and profoundly changed communications and computing industries,the rapid convergence of 5th generation mobile communication technology(5G)and AI is beginning to significantly transform the core communication infrastructure,network management,and vertical applications.The paper first outlined the individual roadmaps of mobile communications and AI in the early stage,with a concentration to review the era from 3rd generation mobile communication technology(3G)to 5G when AI and mobile communications started to converge.With regard to telecommunications AI,the progress of AI in the ecosystem of mobile communications was further introduced in detail,including network infrastructure,network operation and management,business operation and management,intelligent applications towards business supporting system(BSS)&operation supporting system(OSS)convergence,verticals and private networks,etc.Then the classifications of AI in telecommunication ecosystems were summarized along with its evolution paths specified by various international telecommunications standardization organizations.Towards the next decade,the prospective roadmap of telecommunications AI was forecasted.In line with 3rd generation partnership project(3GPP)and International Telecommunication Union Radiocommunication Sector(ITU-R)timeline of 5G&6th generation mobile communication technology(6G),the network intelligence following 3GPP and open radio access network(O-RAN)routes,experience and intent-based network management and operation,network AI signaling system,intelligent middle-office based BSS,intelligent customer experience management and policy control driven by BSS&OSS convergence,evolution from service level agreement(SLA)to experience level agreement(ELA),and intelligent private network for verticals were further explored.The paper is concluded with the vision that AI will reshape the future beyond 5G(B5G)/6G landscape,and we need pivot our research and development(R&D),standardizations,and ecosystem to fully take the unprecedented opportunities.