The optimized geometries at the RHF/6-311++G** level, the relatively stable energy at the MPW1PW91/6-311++G** level and the structural characters of anions have been acquired, indicating the stability is related to ...The optimized geometries at the RHF/6-311++G** level, the relatively stable energy at the MPW1PW91/6-311++G** level and the structural characters of anions have been acquired, indicating the stability is related to the chemical bonding of μ2?P atoms and the distri- bution of negative charges. The configurations of cage units P8 4- and P9 5- are stable due to the less torsion, but their ES values are relatively higher than that of P7 3- with more μ2?P atoms and the isolated stability is lower than that of P7 . They potentially play an important role as intermediate 3- in chemical reaction of producing complicated polyphosphides. Based on the related electronic properties, a stable polyanion must have low valence electron concentration, no (μ2?P)?(μ2?P) bond and a little dispersive charge. The earmark IR frequencies of cage units have been assigned to the vibration models in the end.展开更多
文摘The optimized geometries at the RHF/6-311++G** level, the relatively stable energy at the MPW1PW91/6-311++G** level and the structural characters of anions have been acquired, indicating the stability is related to the chemical bonding of μ2?P atoms and the distri- bution of negative charges. The configurations of cage units P8 4- and P9 5- are stable due to the less torsion, but their ES values are relatively higher than that of P7 3- with more μ2?P atoms and the isolated stability is lower than that of P7 . They potentially play an important role as intermediate 3- in chemical reaction of producing complicated polyphosphides. Based on the related electronic properties, a stable polyanion must have low valence electron concentration, no (μ2?P)?(μ2?P) bond and a little dispersive charge. The earmark IR frequencies of cage units have been assigned to the vibration models in the end.