In this study, a novel phoswich detector for beta–gamma coincidence detection is designed. Unlike the triple crystal phoswich detector designed by researchers at the University of Missouri, Columbia, this phoswich de...In this study, a novel phoswich detector for beta–gamma coincidence detection is designed. Unlike the triple crystal phoswich detector designed by researchers at the University of Missouri, Columbia, this phoswich detector is of the semi-well type, so it has a higher detection efficiency. The detector consists of BC-400 and NaI:Tl with decay time constants of 2.4 and 230 ns, respectively.The BC-400 scintillator detects beta particles, and the Na I:Tl cell is used for gamma detection. Geant4 simulations of this phoswich detector find that a 2-mm-thick BC-400 scintillator can absorb nearly all of the beta particles whose energies are below 700 keV. Further, for a 2.00-cmthick NaI:Tl crystal, the gamma source peak efficiency for photons ranges from a maximum of nearly 90% at 30 keV to 10% at 1 MeV. The self-absorption effect is also discussed in this paper in order to determine the carrier gas' s influence.展开更多
DD4hep serves as a generic detector description toolkit recommended for offline software development in next-generation high-energy physics(HEP)experiments.Conversely,Filmbox(FBX)stands out as a widely used 3D modelin...DD4hep serves as a generic detector description toolkit recommended for offline software development in next-generation high-energy physics(HEP)experiments.Conversely,Filmbox(FBX)stands out as a widely used 3D modeling file format within the 3D software industry.In this paper,we introduce a novel method that can automatically convert complex HEP detector geometries from DD4hep description into 3D models in the FBX format.The feasibility of this method was dem-onstrated by its application to the DD4hep description of the Compact Linear Collider detector and several sub-detectors of the super Tau-Charm facility and circular electron-positron collider experiments.The automatic DD4hep–FBX detector conversion interface provides convenience for further development of applications,such as detector design,simulation,visualization,data monitoring,and outreach,in HEP experiments.展开更多
Geant4 based Monte Carlo study has been carried out to assess the improvement in efficiency of the planar structure of Silicon Carbide(SiC)-based semiconductor fast neutron detector with the stacked structure. A proto...Geant4 based Monte Carlo study has been carried out to assess the improvement in efficiency of the planar structure of Silicon Carbide(SiC)-based semiconductor fast neutron detector with the stacked structure. A proton recoil detector was simulated, which consists of hydrogenous converter, i.e., high-density polyethylene(HDPE) for generating recoil protons by means of neutron elastic scattering(n, p) reaction and semiconductor material SiC, for generating a detectable electrical signal upon transport of recoil protons through it. SiC is considered in order to overcome the various factors associated with conventional Si-based devices such as operability in a harsh radiation environment, as often encountered in nuclear facilities. Converter layer thickness is optimized by considering 10~9 neutron events of different monoenergetic neutron sources as well as ^(241)Am-Be neutron spectrum. It is found that the optimized thickness for neutron energy range of 1–10 MeV is ~400 μm. However, the efficiency of fast neutron detection is estimated to be only 0.112%,which is considered very low for meaningful and reliable detection of neutrons. To overcome this problem, a stacked juxtaposition of converter layer between SiC layers has been analyzed in order to achieve high efficiency. It is noted that a tenfold efficiency improvement has been obtained—1.04% for 10 layers stacked configuration vis-à-vis 0.112% of single converter layer detector. Further simulation of the stacked detector with respect to variable converter thickness has been performed to achieve the efficiency as high as ~3.85% with up to 50 stacks.展开更多
The response functions of a 4π summing BGO detector were established using extensive experimental measurements and GEANT4 simulation. The partial and total efficiencies for all components of the γ-ray interaction wi...The response functions of a 4π summing BGO detector were established using extensive experimental measurements and GEANT4 simulation. The partial and total efficiencies for all components of the γ-ray interaction with the BGO detector were also measured. These response functions and efficiencies will be used in the β-Oslo method experiments to study the neutron capture cross sections of radioactive heavy ions. The application of the response functions of the BGO detector under simulated continuum γ-rays and source measurement γ-rays proves that the method and response functions are reliable.展开更多
A new scintillating fiber detector inside magnetic shielding tube was designed and assembled for use in the next round of fusion experiments in the experimental advanced superconducting tokamak to provide D–T neutron...A new scintillating fiber detector inside magnetic shielding tube was designed and assembled for use in the next round of fusion experiments in the experimental advanced superconducting tokamak to provide D–T neutron yield with time resolution.In this study,Geant4 simulations were used to obtain the pulse height spectra for ideal signals produced when detecting neutrons and gamma rays of multiple energies.One of the main sources of interference was found to be low-energy neutrons below 10–5 MeV,which can generate numerous secondary particles in the detector components,such as the magnetic shielding tube,leading to high-amplitude output signals.To address this issue,a compact thermal neutron shield containing a 1-mm Cd layer outside the magnetic shielding tube and a 5-mm inner Pb layer was specifically designed.Adverse effects on the measurement of fast neutrons and the shielding effect on gamma rays were considered.This can suppress the height of the signals caused by thermal neutrons to a level below the height corresponding to neutrons above 4 MeV because the yield of the latter is used for detector calibration.In addition,the detector has relatively flat sensitivity curves in the fast neutron region,with the intrinsic detection efficiencies(IDEs)of approximately 40%.For gamma rays with energies that are not too high(<8 MeV),the IDEs of the detector are only approximately 20%,whereas for gamma rays below 1 MeV,the response curve cuts off earlier in the low-energy region,which is beneficial for avoiding counting saturation and signal accumulation.展开更多
Real-time monitoring of the 14-MeV D-T fusion neutron yield is urgently required for the triton burnup study on the Experimental Advanced Superconducting Tokamak (EAST). In this study, we developed an optimal design o...Real-time monitoring of the 14-MeV D-T fusion neutron yield is urgently required for the triton burnup study on the Experimental Advanced Superconducting Tokamak (EAST). In this study, we developed an optimal design of a fast-neutron detector based on the scintillating fiber (Sci-Fi) to provide D-T neutron yield through Geant4simulation. The effect on the detection performance is concerned when changing the number of the Sci-Fis embedded in the probe head, minimum distance between the fibers, length of the fibers, or substrate material of the probe head. The maximum number of scintillation photons generated by the n/γ source particles and output by the light guide within an event (event:the entire simulation process for one source particle) was used to quantify the n/γ resolution of the detector as the main basis. And the intrinsic detection efficiency was used as another evaluation criterion. The results demonstrate that the optimal design scheme is to use a 5 cm probe head whose substrate material is pure aluminum, in which 463 Sci-Fis with the same length of 5 cm are embedded, and the minimum distance between the centers of the two fibers is 2 mm. The optimized detector exhibits clear directionality in the simulation, which is in line with the expectation and experimental data provided in the literature. This study presents the variation trends of the performance of the SciFi detector when its main parameters change, which is beneficial for the targeted design and optimization of the Sci-Fi detector used in a specific radiation environment.展开更多
在核工业的一些工作场所中往往同时存在β射线和γ射线,准确测量β粒子和γ粒子能谱对于相关工作人员的辐射防护十分重要。本文利用Geant4模拟了β粒子和γ粒子在叠层闪烁体探测器中的能量沉积,研究了材料和结构对叠层闪烁体探测器甄别...在核工业的一些工作场所中往往同时存在β射线和γ射线,准确测量β粒子和γ粒子能谱对于相关工作人员的辐射防护十分重要。本文利用Geant4模拟了β粒子和γ粒子在叠层闪烁体探测器中的能量沉积,研究了材料和结构对叠层闪烁体探测器甄别性能的影响。模拟结果显示,对于双层结构的闪烁体探测器,第1层和第2层选用不同材料的闪烁体对β粒子的甄别影响不大,主要影响对γ粒子的甄别。γ粒子的误甄别率和识别率分别随第1层和第2层材料原子序数的增加而增加。3层结构闪烁体探测器对于γ粒子的误甄别率明显低于双层结构,并且γ粒子的误甄别率随第1层闪烁体厚度的增加而增加。经过对模拟结果分析,采用0.2 mm BC-444+17.8 mm BC-444+25 mm BaF_(2)的3层闪烁体结构甄别性能较好,对β粒子和γ粒子的平均识别率和误甄别率分别为96.7%、41.1%和<0.001%、0.16%。展开更多
基金supported by the National Natural Science Foundation of China(Nos.11205108,11475121,and 11575145)the Excellent Youth Fund of Sichuan University(No.2016SCU04A13)
文摘In this study, a novel phoswich detector for beta–gamma coincidence detection is designed. Unlike the triple crystal phoswich detector designed by researchers at the University of Missouri, Columbia, this phoswich detector is of the semi-well type, so it has a higher detection efficiency. The detector consists of BC-400 and NaI:Tl with decay time constants of 2.4 and 230 ns, respectively.The BC-400 scintillator detects beta particles, and the Na I:Tl cell is used for gamma detection. Geant4 simulations of this phoswich detector find that a 2-mm-thick BC-400 scintillator can absorb nearly all of the beta particles whose energies are below 700 keV. Further, for a 2.00-cmthick NaI:Tl crystal, the gamma source peak efficiency for photons ranges from a maximum of nearly 90% at 30 keV to 10% at 1 MeV. The self-absorption effect is also discussed in this paper in order to determine the carrier gas' s influence.
基金supported by the National Natural Science Foundation of China(Nos.12175321,11975021,11675275,and U1932101)National Key Research and Development Program of China(Nos.2023YFA1606000 and 2020YFA0406400)+2 种基金State Key Laboratory of Nuclear Physics and Technology,Peking University(Nos.NPT2020KFY04 and NPT2020KFY05)Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDA10010900)National College Students Science and Technology Innovation Project,and Undergraduate Base Scientific Research Project of Sun Yat-sen University。
文摘DD4hep serves as a generic detector description toolkit recommended for offline software development in next-generation high-energy physics(HEP)experiments.Conversely,Filmbox(FBX)stands out as a widely used 3D modeling file format within the 3D software industry.In this paper,we introduce a novel method that can automatically convert complex HEP detector geometries from DD4hep description into 3D models in the FBX format.The feasibility of this method was dem-onstrated by its application to the DD4hep description of the Compact Linear Collider detector and several sub-detectors of the super Tau-Charm facility and circular electron-positron collider experiments.The automatic DD4hep–FBX detector conversion interface provides convenience for further development of applications,such as detector design,simulation,visualization,data monitoring,and outreach,in HEP experiments.
基金supported by the grant of a research fellowship from Indira Gandhi Centre for Atomic Research,Department of Atomic Energy,India
文摘Geant4 based Monte Carlo study has been carried out to assess the improvement in efficiency of the planar structure of Silicon Carbide(SiC)-based semiconductor fast neutron detector with the stacked structure. A proton recoil detector was simulated, which consists of hydrogenous converter, i.e., high-density polyethylene(HDPE) for generating recoil protons by means of neutron elastic scattering(n, p) reaction and semiconductor material SiC, for generating a detectable electrical signal upon transport of recoil protons through it. SiC is considered in order to overcome the various factors associated with conventional Si-based devices such as operability in a harsh radiation environment, as often encountered in nuclear facilities. Converter layer thickness is optimized by considering 10~9 neutron events of different monoenergetic neutron sources as well as ^(241)Am-Be neutron spectrum. It is found that the optimized thickness for neutron energy range of 1–10 MeV is ~400 μm. However, the efficiency of fast neutron detection is estimated to be only 0.112%,which is considered very low for meaningful and reliable detection of neutrons. To overcome this problem, a stacked juxtaposition of converter layer between SiC layers has been analyzed in order to achieve high efficiency. It is noted that a tenfold efficiency improvement has been obtained—1.04% for 10 layers stacked configuration vis-à-vis 0.112% of single converter layer detector. Further simulation of the stacked detector with respect to variable converter thickness has been performed to achieve the efficiency as high as ~3.85% with up to 50 stacks.
基金supported by the National Key Research and Development Program of China(Nos.2016YFA0400502,2018YFA0404404)the National Natural Science Foundation of China(Nos.U1867211,11490563,12005304,12125509,11961141003 and U1332129)。
文摘The response functions of a 4π summing BGO detector were established using extensive experimental measurements and GEANT4 simulation. The partial and total efficiencies for all components of the γ-ray interaction with the BGO detector were also measured. These response functions and efficiencies will be used in the β-Oslo method experiments to study the neutron capture cross sections of radioactive heavy ions. The application of the response functions of the BGO detector under simulated continuum γ-rays and source measurement γ-rays proves that the method and response functions are reliable.
基金supported by the University Synergy Innovation Program of Anhui Province(No.GXXT-2022-001)the Institute of Energy,Hefei Comprehensive National Science Center(Anhui Energy Laboratory)under Grant No.21KZS205 and 21KZL401the Comprehensive Research Facility for Fusion Technology Program of China(No.2018-000052-73-01-001228).
文摘A new scintillating fiber detector inside magnetic shielding tube was designed and assembled for use in the next round of fusion experiments in the experimental advanced superconducting tokamak to provide D–T neutron yield with time resolution.In this study,Geant4 simulations were used to obtain the pulse height spectra for ideal signals produced when detecting neutrons and gamma rays of multiple energies.One of the main sources of interference was found to be low-energy neutrons below 10–5 MeV,which can generate numerous secondary particles in the detector components,such as the magnetic shielding tube,leading to high-amplitude output signals.To address this issue,a compact thermal neutron shield containing a 1-mm Cd layer outside the magnetic shielding tube and a 5-mm inner Pb layer was specifically designed.Adverse effects on the measurement of fast neutrons and the shielding effect on gamma rays were considered.This can suppress the height of the signals caused by thermal neutrons to a level below the height corresponding to neutrons above 4 MeV because the yield of the latter is used for detector calibration.In addition,the detector has relatively flat sensitivity curves in the fast neutron region,with the intrinsic detection efficiencies(IDEs)of approximately 40%.For gamma rays with energies that are not too high(<8 MeV),the IDEs of the detector are only approximately 20%,whereas for gamma rays below 1 MeV,the response curve cuts off earlier in the low-energy region,which is beneficial for avoiding counting saturation and signal accumulation.
基金supported by the Users with Excellence Program of Hefei Science Center CAS(No.2020HSC-UE012)the Comprehensive Research Facility for Fusion Technology Program of China(No.2018-000052-73-01-001228)the Institute of Energy,Hefei Comprehensive National Science Center(No.21KZS205,21KZL401).
文摘Real-time monitoring of the 14-MeV D-T fusion neutron yield is urgently required for the triton burnup study on the Experimental Advanced Superconducting Tokamak (EAST). In this study, we developed an optimal design of a fast-neutron detector based on the scintillating fiber (Sci-Fi) to provide D-T neutron yield through Geant4simulation. The effect on the detection performance is concerned when changing the number of the Sci-Fis embedded in the probe head, minimum distance between the fibers, length of the fibers, or substrate material of the probe head. The maximum number of scintillation photons generated by the n/γ source particles and output by the light guide within an event (event:the entire simulation process for one source particle) was used to quantify the n/γ resolution of the detector as the main basis. And the intrinsic detection efficiency was used as another evaluation criterion. The results demonstrate that the optimal design scheme is to use a 5 cm probe head whose substrate material is pure aluminum, in which 463 Sci-Fis with the same length of 5 cm are embedded, and the minimum distance between the centers of the two fibers is 2 mm. The optimized detector exhibits clear directionality in the simulation, which is in line with the expectation and experimental data provided in the literature. This study presents the variation trends of the performance of the SciFi detector when its main parameters change, which is beneficial for the targeted design and optimization of the Sci-Fi detector used in a specific radiation environment.
文摘在核工业的一些工作场所中往往同时存在β射线和γ射线,准确测量β粒子和γ粒子能谱对于相关工作人员的辐射防护十分重要。本文利用Geant4模拟了β粒子和γ粒子在叠层闪烁体探测器中的能量沉积,研究了材料和结构对叠层闪烁体探测器甄别性能的影响。模拟结果显示,对于双层结构的闪烁体探测器,第1层和第2层选用不同材料的闪烁体对β粒子的甄别影响不大,主要影响对γ粒子的甄别。γ粒子的误甄别率和识别率分别随第1层和第2层材料原子序数的增加而增加。3层结构闪烁体探测器对于γ粒子的误甄别率明显低于双层结构,并且γ粒子的误甄别率随第1层闪烁体厚度的增加而增加。经过对模拟结果分析,采用0.2 mm BC-444+17.8 mm BC-444+25 mm BaF_(2)的3层闪烁体结构甄别性能较好,对β粒子和γ粒子的平均识别率和误甄别率分别为96.7%、41.1%和<0.001%、0.16%。