Steroid medication is used extensively in clinical applications and comprises a large and vital part of the pharmaceutical industry. However, the difficulty of separating 4-androstene-3,17-dione (AD) from 1,4-andros...Steroid medication is used extensively in clinical applications and comprises a large and vital part of the pharmaceutical industry. However, the difficulty of separating 4-androstene-3,17-dione (AD) from 1,4-androstadiene- 3,17-dione (ADD) restricts the application of the microbial transformation of phytosterols in the industry. A novel at- mospheric and room temperature plasma (ARTP) treatment, which employs helium as the working gas, was used to generate Mycobacterium neoaurum mutants producing large amounts of AD. After treatment of cultures with ARTP, four mutants were selected using a novel screening method with a color assay. Among the mutants, M. neoaurum ZADF-4 was considered the best candidate for industrial application. When the fermentation medium contained 15 g/L phytosterols and was cultivated on a rotary shaker at 160 r/min at 30 ~C for 7 d, (6.28+0.11) g/L of AD and (0.82+0.05) g/L of ADD were produced by the ZADF-4 mutant, compared with (4.83+0.13) g/L of AD and (2.34+0.06) g/L of ADD by the original strain, Iv~. neoaururn ZAD. Compared with ZAD, the molar yield of AD increased from 48.3% to 60.3% in the ZADF-4 mutant. This result indicates that ZADF-4 may have potential for industrial production of AD.展开更多
By introducing 2-hydroxy-4-methoxy-benzophenone(UVA) and 1,10-phenanthroline(Phen) as the ligands, the ternary rare earth complex of Eu(UVA)3Phen is synthesized, and it is characterized by elemental analysis, mass spe...By introducing 2-hydroxy-4-methoxy-benzophenone(UVA) and 1,10-phenanthroline(Phen) as the ligands, the ternary rare earth complex of Eu(UVA)3Phen is synthesized, and it is characterized by elemental analysis, mass spectra(MS) and infrared(IR) and ultraviolet(UV) spectroscopy. Results show that the Eu(III) in complex emits strong red luminescence when it is excited by UV light, and it has higher sensitized luminescent efficiency and longer lifetime. The organic-inorganic thin film of complex Eu(UVA)3Phen doped with nano-Ti O2 is prepared, and the nano-Ti O2 is used in the luminescence layer to change the luminescence property of Eu(UVA)3Phen. It is found that there is an efficient energy transfer process between ligands and metal ions. Moreover, in an indium tin oxide(ITO)/poly(N-vinylcar-bazole)(PVK)/Eu(UVA)3Phen/Al device, Eu3+ can be excited by intramolecular ligand-to-metal energy transfer process. The main peak of emission at 613 nm is attributed to 5D0→7F2 transition of the Eu3+, and this process results in the enhanced red emission.展开更多
基金supported by the National Basic Research Program(973)of China(No.2012CB725202)the National High-Tech R&D Program(863)of China(No.2011AA02A211)+4 种基金the National Natural Science Foundation of China(No.21276110)the Fundamental Research Funds for the Central Universities(Nos.JUSRP51306A and JUSRP11545)the National 111 Project of China’s Higher Education(No.111-2-06)the Program of the Key Laboratory of Industrial Biotechnology,Ministry of Education,China(No.KLIB-KF201406)the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD),China
文摘Steroid medication is used extensively in clinical applications and comprises a large and vital part of the pharmaceutical industry. However, the difficulty of separating 4-androstene-3,17-dione (AD) from 1,4-androstadiene- 3,17-dione (ADD) restricts the application of the microbial transformation of phytosterols in the industry. A novel at- mospheric and room temperature plasma (ARTP) treatment, which employs helium as the working gas, was used to generate Mycobacterium neoaurum mutants producing large amounts of AD. After treatment of cultures with ARTP, four mutants were selected using a novel screening method with a color assay. Among the mutants, M. neoaurum ZADF-4 was considered the best candidate for industrial application. When the fermentation medium contained 15 g/L phytosterols and was cultivated on a rotary shaker at 160 r/min at 30 ~C for 7 d, (6.28+0.11) g/L of AD and (0.82+0.05) g/L of ADD were produced by the ZADF-4 mutant, compared with (4.83+0.13) g/L of AD and (2.34+0.06) g/L of ADD by the original strain, Iv~. neoaururn ZAD. Compared with ZAD, the molar yield of AD increased from 48.3% to 60.3% in the ZADF-4 mutant. This result indicates that ZADF-4 may have potential for industrial production of AD.
基金supported by the National Natural Science Foundation of China(No.21346006)the Department of Scientific Research Project in Heilongjiang Province(Nos.B201111 and B201015)+4 种基金the Scientific Research Project of Heilongjiang Province Education Department(Nos.12541783,12541830,12541821 and 12531693)the National College Students'Innovation and Entrepreneurship Training Major Project(No.201310222013)the Interdisciplinary Research Project of Jiamusi University(No.JC2014-005)the Graduate Scientific and Technological Innovation Major Project of Jiamusi University(No.LZR2014_034)the Jiamusi University Students'Science and Technology Innovation Project(No.XSYD 2004-020)
文摘By introducing 2-hydroxy-4-methoxy-benzophenone(UVA) and 1,10-phenanthroline(Phen) as the ligands, the ternary rare earth complex of Eu(UVA)3Phen is synthesized, and it is characterized by elemental analysis, mass spectra(MS) and infrared(IR) and ultraviolet(UV) spectroscopy. Results show that the Eu(III) in complex emits strong red luminescence when it is excited by UV light, and it has higher sensitized luminescent efficiency and longer lifetime. The organic-inorganic thin film of complex Eu(UVA)3Phen doped with nano-Ti O2 is prepared, and the nano-Ti O2 is used in the luminescence layer to change the luminescence property of Eu(UVA)3Phen. It is found that there is an efficient energy transfer process between ligands and metal ions. Moreover, in an indium tin oxide(ITO)/poly(N-vinylcar-bazole)(PVK)/Eu(UVA)3Phen/Al device, Eu3+ can be excited by intramolecular ligand-to-metal energy transfer process. The main peak of emission at 613 nm is attributed to 5D0→7F2 transition of the Eu3+, and this process results in the enhanced red emission.