采用水热-煅烧法制备了磁性镍铁尖晶石载体NiFe_(2)O_(4),再采用浸渍-还原法在载体上负载Ru纳米粒子制备Ru/NiFe_(2)O_(4)催化剂。采用X射线衍射(XRD)、N2吸附-脱附(BET)、NH3程序升温脱附(NH3-TPD)、H_(2)程序升温还原(H_(2)-TPR)、X...采用水热-煅烧法制备了磁性镍铁尖晶石载体NiFe_(2)O_(4),再采用浸渍-还原法在载体上负载Ru纳米粒子制备Ru/NiFe_(2)O_(4)催化剂。采用X射线衍射(XRD)、N2吸附-脱附(BET)、NH3程序升温脱附(NH3-TPD)、H_(2)程序升温还原(H_(2)-TPR)、X射线光电子能谱(XPS)和电感耦合等离子体发射光谱(ICP-OES)测试对催化剂进行表征分析。结果表明,Ru/NiFe_(2)O_(4)催化剂表面氧物种丰富,相较于载体,负载Ru后催化剂比表面积和表面酸量增加,Ru与载体存在相互作用,这可能是催化剂高活性和高稳定性的关键。将催化剂用于5-羟甲基糠醛(HMF)的选择性氧化,负载Ru后,催化剂催化活性显著提升。对反应条件进行优化,在添加0.08 g KHCO3,氧化剂O2压力为1 MPa,反应温度为80℃,使用0.1 g Ru/NiFe_(2)O_(4)催化剂,在水溶液中反应12 h HMF能完全转化,2,5-呋喃二甲酸(FDCA)产率为98.1%。Ru/NiFe_(2)O_(4)循环使用5次后仍能保持较高的活性,催化剂上活性组分Ru不易浸出,并且催化剂具有磁性能便于与反应溶液分离。为今后工业化催化HMF高效选择性氧化合成FDCA提供参考。展开更多
对Pd/AC催化剂上对苯二甲酸(TA)加氢精制过程中的对羧基苯甲醛(4-CBA)加氢反应进行了研究。考察了氢分压、反应温度、催化剂颗粒大小对4-CBA消逝速率的影响,结果表明:在高于0.35 M Pa时,氢分压对4-CBA加氢反应速率的影响很小,而温度和...对Pd/AC催化剂上对苯二甲酸(TA)加氢精制过程中的对羧基苯甲醛(4-CBA)加氢反应进行了研究。考察了氢分压、反应温度、催化剂颗粒大小对4-CBA消逝速率的影响,结果表明:在高于0.35 M Pa时,氢分压对4-CBA加氢反应速率的影响很小,而温度和催化剂粒度大小对加氢反应的影响显著。同时,工业条件下的TA加氢精制过程存在着严重的内外扩散。采用幂函数动力学模型方程利用M atlab拟合得到了不同粒度催化剂上的表观动力学方程。展开更多
文摘采用水热-煅烧法制备了磁性镍铁尖晶石载体NiFe_(2)O_(4),再采用浸渍-还原法在载体上负载Ru纳米粒子制备Ru/NiFe_(2)O_(4)催化剂。采用X射线衍射(XRD)、N2吸附-脱附(BET)、NH3程序升温脱附(NH3-TPD)、H_(2)程序升温还原(H_(2)-TPR)、X射线光电子能谱(XPS)和电感耦合等离子体发射光谱(ICP-OES)测试对催化剂进行表征分析。结果表明,Ru/NiFe_(2)O_(4)催化剂表面氧物种丰富,相较于载体,负载Ru后催化剂比表面积和表面酸量增加,Ru与载体存在相互作用,这可能是催化剂高活性和高稳定性的关键。将催化剂用于5-羟甲基糠醛(HMF)的选择性氧化,负载Ru后,催化剂催化活性显著提升。对反应条件进行优化,在添加0.08 g KHCO3,氧化剂O2压力为1 MPa,反应温度为80℃,使用0.1 g Ru/NiFe_(2)O_(4)催化剂,在水溶液中反应12 h HMF能完全转化,2,5-呋喃二甲酸(FDCA)产率为98.1%。Ru/NiFe_(2)O_(4)循环使用5次后仍能保持较高的活性,催化剂上活性组分Ru不易浸出,并且催化剂具有磁性能便于与反应溶液分离。为今后工业化催化HMF高效选择性氧化合成FDCA提供参考。
文摘对Pd/AC催化剂上对苯二甲酸(TA)加氢精制过程中的对羧基苯甲醛(4-CBA)加氢反应进行了研究。考察了氢分压、反应温度、催化剂颗粒大小对4-CBA消逝速率的影响,结果表明:在高于0.35 M Pa时,氢分压对4-CBA加氢反应速率的影响很小,而温度和催化剂粒度大小对加氢反应的影响显著。同时,工业条件下的TA加氢精制过程存在着严重的内外扩散。采用幂函数动力学模型方程利用M atlab拟合得到了不同粒度催化剂上的表观动力学方程。