New highly stereoregular 2, 3 -di- O-(p-azidobenzyl )-(1 →5 ) - α-D -ribofuranan was synthesized byselective ring-opening polymerization of 1, 4-anhydro-2, 3 - di-O -(p-azidobenzyl )-α-D -ribopyranose(ADABR) using ...New highly stereoregular 2, 3 -di- O-(p-azidobenzyl )-(1 →5 ) - α-D -ribofuranan was synthesized byselective ring-opening polymerization of 1, 4-anhydro-2, 3 - di-O -(p-azidobenzyl )-α-D -ribopyranose(ADABR) using phosphorus pentafluoride or tin tetrachloride as catalyst at low temperature indichloromethane. The monomer was obtained by the reaction of p - bromomethyl -phenyleneazide with 1, 4 -anhydro-α-D-ribose in DMF. The structure of poly(ADANR) was identified by specific rotation and ^(13)C-NMR spectroscopy. Acid chloride-AgCl_4 complex catalyst such as CH_2=C(CH_3)C^+OClO_4^- used in thepolymerization resulted in polymers with mixed structures, i.e. (1→5)-α-D-ribofuranosidic and (1→4)-β-D-ribopyranosidic units. However, with C_6H_5C^+OClO_4^- as catalyst, pure (1→5)-α-D-ribofuranan was obtained.The effects of catalyst, polymerization temperature and time on polymer stereoregularity were examined, andthe mechanism of the ring-opening polymerization was discussed.展开更多
为克服目前合成方法存在收率较低,反应时间长、产品分离困难等不足,本文以β-D-葡萄糖、乙酰溴为原料,经乙酰化、溴代反应合成了糖基体2,3,4,6-O-四乙酰基-α-D-溴代葡萄糖,再与4-羟基苯甲醛衍生物经糖苷化反应合成了5种4-甲酰基苯基(2,...为克服目前合成方法存在收率较低,反应时间长、产品分离困难等不足,本文以β-D-葡萄糖、乙酰溴为原料,经乙酰化、溴代反应合成了糖基体2,3,4,6-O-四乙酰基-α-D-溴代葡萄糖,再与4-羟基苯甲醛衍生物经糖苷化反应合成了5种4-甲酰基苯基(2,3,4,6-O-四乙酰基)-β-D-葡萄糖苷衍生物。在合成4-甲酰基苯基(2,3,4,6-O-四乙酰基)-β-D-葡萄糖苷衍生物的过程中,采用10%(质量分数) Na OH溶液为缚酸剂,三(3,6-二氧杂庚基)胺(TDA-1)为相转移催化剂,反应物的收率为61%~69%,并应用核磁共振技术确定了产品的结构。该方法具有产品收率较高,反应温和、操作简单等优点。展开更多
文摘New highly stereoregular 2, 3 -di- O-(p-azidobenzyl )-(1 →5 ) - α-D -ribofuranan was synthesized byselective ring-opening polymerization of 1, 4-anhydro-2, 3 - di-O -(p-azidobenzyl )-α-D -ribopyranose(ADABR) using phosphorus pentafluoride or tin tetrachloride as catalyst at low temperature indichloromethane. The monomer was obtained by the reaction of p - bromomethyl -phenyleneazide with 1, 4 -anhydro-α-D-ribose in DMF. The structure of poly(ADANR) was identified by specific rotation and ^(13)C-NMR spectroscopy. Acid chloride-AgCl_4 complex catalyst such as CH_2=C(CH_3)C^+OClO_4^- used in thepolymerization resulted in polymers with mixed structures, i.e. (1→5)-α-D-ribofuranosidic and (1→4)-β-D-ribopyranosidic units. However, with C_6H_5C^+OClO_4^- as catalyst, pure (1→5)-α-D-ribofuranan was obtained.The effects of catalyst, polymerization temperature and time on polymer stereoregularity were examined, andthe mechanism of the ring-opening polymerization was discussed.
文摘为克服目前合成方法存在收率较低,反应时间长、产品分离困难等不足,本文以β-D-葡萄糖、乙酰溴为原料,经乙酰化、溴代反应合成了糖基体2,3,4,6-O-四乙酰基-α-D-溴代葡萄糖,再与4-羟基苯甲醛衍生物经糖苷化反应合成了5种4-甲酰基苯基(2,3,4,6-O-四乙酰基)-β-D-葡萄糖苷衍生物。在合成4-甲酰基苯基(2,3,4,6-O-四乙酰基)-β-D-葡萄糖苷衍生物的过程中,采用10%(质量分数) Na OH溶液为缚酸剂,三(3,6-二氧杂庚基)胺(TDA-1)为相转移催化剂,反应物的收率为61%~69%,并应用核磁共振技术确定了产品的结构。该方法具有产品收率较高,反应温和、操作简单等优点。