N-acetyl-glucosamine, the monomer of chitin, was cyclo-condensed with L-cysteine to prepare thiazolidine derivative: 2-N-acetyl-glucosamine-thiazolidine-4(R)-carboxylic acid (GlcNAcCys). The stability of GlcNAcCy...N-acetyl-glucosamine, the monomer of chitin, was cyclo-condensed with L-cysteine to prepare thiazolidine derivative: 2-N-acetyl-glucosamine-thiazolidine-4(R)-carboxylic acid (GlcNAcCys). The stability of GlcNAcCys was evaluated by high performance liquid chromatography (HPLC) measurement. The results showed that GlcNAcCys was more stable than other TCA derivatives, especially in alkaline condition. The direct in vitro antioxidative properties of GlcNAcCys were investigated by using UV radiation-induced lipid peroxidation (LPO) in mitochondria and nuclei and . OH-induced LPO in red blood cell (RBC) ghosts models. UV radiation caused dose-dependent LPO in both mitochondria and nuclei. This effect was catalyzed by addition of Fe^2 + while prevented by co-incubation with GlcNAcCys. When nuclei and mitochondria was treated with 100μl, 300μl, 500μl of GlcNAcCys and co-incubated at 37℃ for 30min, LPO was decreased to 96%, 72%, 68% in nuclei and 95%, 72%, 68% in mitochondria when compared to the UV radiation group respectively. Hydroxyl radicals (. OH) generated by Fenton reaction induced LPO in RBC ghosts. Pretreatment of RBC ghosts with GlcNAcCys could induce antioxidant RBC ghosts and inhibit concentration-dependent malondialdehyde (MDA) formation in antioxidant RBC ghosts. Its inhibition percent was 14%, 35%, 36%, 42% at 10, 20, 30, 40mg/ml respectively. In a conclusion, the data suggest that GlcNAcCys has antioxidant ability and can significantly inhibit lipid peroxidation in biological samples tested in vitro.展开更多
In this paper a preliminary investigation of a novel optoelectronic polymer, poly (p-phenylene N-4-n-butylphenyl-N,N-bis- 4-vinylenephenylamine) (PNB), is reported. A single layer structure of ITO/PNB/Al was prepared ...In this paper a preliminary investigation of a novel optoelectronic polymer, poly (p-phenylene N-4-n-butylphenyl-N,N-bis- 4-vinylenephenylamine) (PNB), is reported. A single layer structure of ITO/PNB/Al was prepared via spin-coating of PNB solution as a thin film on the top of an ITO substrate, while aluminum top electrode was vacuum evaporated. Dark current- voltage characteristics of this device showed a typical rectifying behaviour. Photovoltaic response under a monochromatic illumination at 420 nm was observed, with an open circuit voltage of 0.3 V and fill factor of 0.21. Spectral response and optical absorption were found to be matched well. It was also discovered that the device showed a green electroluminescent emission at a forward bias. Turn-on voltage of the device was about 6 V and light output about 22.6 nW at a forward bias of 10 V. The work demonstrated that the PNB material might possess dual exciton sites resulting in a competition for excitons to be either separated or recombined. Both effects were associated with each other, which limited the photovoltaic or electroluminescence to some degrees.展开更多
文摘N-acetyl-glucosamine, the monomer of chitin, was cyclo-condensed with L-cysteine to prepare thiazolidine derivative: 2-N-acetyl-glucosamine-thiazolidine-4(R)-carboxylic acid (GlcNAcCys). The stability of GlcNAcCys was evaluated by high performance liquid chromatography (HPLC) measurement. The results showed that GlcNAcCys was more stable than other TCA derivatives, especially in alkaline condition. The direct in vitro antioxidative properties of GlcNAcCys were investigated by using UV radiation-induced lipid peroxidation (LPO) in mitochondria and nuclei and . OH-induced LPO in red blood cell (RBC) ghosts models. UV radiation caused dose-dependent LPO in both mitochondria and nuclei. This effect was catalyzed by addition of Fe^2 + while prevented by co-incubation with GlcNAcCys. When nuclei and mitochondria was treated with 100μl, 300μl, 500μl of GlcNAcCys and co-incubated at 37℃ for 30min, LPO was decreased to 96%, 72%, 68% in nuclei and 95%, 72%, 68% in mitochondria when compared to the UV radiation group respectively. Hydroxyl radicals (. OH) generated by Fenton reaction induced LPO in RBC ghosts. Pretreatment of RBC ghosts with GlcNAcCys could induce antioxidant RBC ghosts and inhibit concentration-dependent malondialdehyde (MDA) formation in antioxidant RBC ghosts. Its inhibition percent was 14%, 35%, 36%, 42% at 10, 20, 30, 40mg/ml respectively. In a conclusion, the data suggest that GlcNAcCys has antioxidant ability and can significantly inhibit lipid peroxidation in biological samples tested in vitro.
基金This work is supported by National Natural Science Foundationof China(20344002,10434030) State Key Program forBasic research of China (2003CB314707)
文摘In this paper a preliminary investigation of a novel optoelectronic polymer, poly (p-phenylene N-4-n-butylphenyl-N,N-bis- 4-vinylenephenylamine) (PNB), is reported. A single layer structure of ITO/PNB/Al was prepared via spin-coating of PNB solution as a thin film on the top of an ITO substrate, while aluminum top electrode was vacuum evaporated. Dark current- voltage characteristics of this device showed a typical rectifying behaviour. Photovoltaic response under a monochromatic illumination at 420 nm was observed, with an open circuit voltage of 0.3 V and fill factor of 0.21. Spectral response and optical absorption were found to be matched well. It was also discovered that the device showed a green electroluminescent emission at a forward bias. Turn-on voltage of the device was about 6 V and light output about 22.6 nW at a forward bias of 10 V. The work demonstrated that the PNB material might possess dual exciton sites resulting in a competition for excitons to be either separated or recombined. Both effects were associated with each other, which limited the photovoltaic or electroluminescence to some degrees.