In this paper, we propose a method for characterizing a musical signal by extracting a set of harmonic descriptors reflecting the maximum information contained in this signal. We focus our study on a signal of orienta...In this paper, we propose a method for characterizing a musical signal by extracting a set of harmonic descriptors reflecting the maximum information contained in this signal. We focus our study on a signal of oriental music characterized by its richness in tone that can be extended to 1/4 tone, taking into account the frequency and time characteristics of this type of music. To do so, the original signal is slotted and analyzed on a window of short duration. This signal is viewed as the result of a combined modulation of amplitude and frequency. For this result, we apply short-term the non-stationary sinusoidal modeling technique. In each segment, the signal is represented by a set of sinusoids characterized by their intrinsic parameters: amplitudes, frequencies and phases. The modeling approach adopted is closely related to the slot window;therefore great importance is devoted to the study and the choice of the kind of the window and its width. It must be of variable length in order to get better results in the practical implementation of our method. For this purpose, evaluation tests were carried out by synthesizing the signal from the estimated parameters. Interesting results have been identified concerning the comparison of the synthesized signal with the original signal.展开更多
Ultraperformance liquid chromatography/quadrupole-time-of-flight mass spectrometry(UPLC-Q-TOF/MS) and the MetabolynxTM software, combined with mass defect filtering, were applied to identity the metabolites of quercet...Ultraperformance liquid chromatography/quadrupole-time-of-flight mass spectrometry(UPLC-Q-TOF/MS) and the MetabolynxTM software, combined with mass defect filtering, were applied to identity the metabolites of quercetin-3-O-β-D-glucopyranosyl-(4→1)-α-L-rhamnoside(QGR) in rats after intravenous administration. MSE was used for simultaneous acquisition of precursor ion information and fragment ion data at high and low collision energy in one analytical run, which facilitated the rapid structural characterization of eight metabolites in rat plasma, urine and bile. The results indicated that methylation and glucuronidation were the major metabolic pathways of QGR in vivo. The present study provided important information about the metabolism of QGR which will be useful for fully understanding the mechanism of action of this compound. Furthermore, this work demonstrated the potential of the UPLC-Q-TOF/MS approach using Metabolynx for rapid and automated research of the metabolites of natural products.展开更多
文摘In this paper, we propose a method for characterizing a musical signal by extracting a set of harmonic descriptors reflecting the maximum information contained in this signal. We focus our study on a signal of oriental music characterized by its richness in tone that can be extended to 1/4 tone, taking into account the frequency and time characteristics of this type of music. To do so, the original signal is slotted and analyzed on a window of short duration. This signal is viewed as the result of a combined modulation of amplitude and frequency. For this result, we apply short-term the non-stationary sinusoidal modeling technique. In each segment, the signal is represented by a set of sinusoids characterized by their intrinsic parameters: amplitudes, frequencies and phases. The modeling approach adopted is closely related to the slot window;therefore great importance is devoted to the study and the choice of the kind of the window and its width. It must be of variable length in order to get better results in the practical implementation of our method. For this purpose, evaluation tests were carried out by synthesizing the signal from the estimated parameters. Interesting results have been identified concerning the comparison of the synthesized signal with the original signal.
基金supported by the National Science and Technology Support Program of China(No.2011 BAI04B03)
文摘Ultraperformance liquid chromatography/quadrupole-time-of-flight mass spectrometry(UPLC-Q-TOF/MS) and the MetabolynxTM software, combined with mass defect filtering, were applied to identity the metabolites of quercetin-3-O-β-D-glucopyranosyl-(4→1)-α-L-rhamnoside(QGR) in rats after intravenous administration. MSE was used for simultaneous acquisition of precursor ion information and fragment ion data at high and low collision energy in one analytical run, which facilitated the rapid structural characterization of eight metabolites in rat plasma, urine and bile. The results indicated that methylation and glucuronidation were the major metabolic pathways of QGR in vivo. The present study provided important information about the metabolism of QGR which will be useful for fully understanding the mechanism of action of this compound. Furthermore, this work demonstrated the potential of the UPLC-Q-TOF/MS approach using Metabolynx for rapid and automated research of the metabolites of natural products.