A novel iron-glutamate-silicotungstate ternary complex(FeШGluS iW) was synthesized from ferric chloride(FeI II),glutamic acid(Glu),and silicotungstic acid(SiW),and used as a heterogeneous Fenton-like catalyst...A novel iron-glutamate-silicotungstate ternary complex(FeШGluS iW) was synthesized from ferric chloride(FeI II),glutamic acid(Glu),and silicotungstic acid(SiW),and used as a heterogeneous Fenton-like catalyst for 4-chlorophenol(4-CP) degradation at neutral pH value. The prepared FeШGluS iW was characterized using inductively coupled plasma atomic emission spectroscopy,thermogravimetry,Fourier-transform infrared spectroscopy,ultraviolet-visible diffuse reflectance spectroscopy,X-ray diffraction,and field-emission scanning electron microscopy. The results showed that FeШGluS iW has the formula [Fe(C5H8NO4)(H2O)]2SiW 12O40?13H2O,with glutamate moiety and Keggin-structured SiW 12O404- heteropolyanion. The catalyst showed high catalytic activity in 4-CP degradation in the dark and under irradiation. Under the conditions of 4-CP 100 mg/L,FeШGluS iW 1.0 g/L,H2O2 20 mmol/L,and pH = 6.5,4-CP was completely decomposed in 40 min in the dark and in 15 min under irradiation. When the reaction time was prolonged to 2 h,the corresponding total organic carbon removals under dark and irradiated conditions were ca. 27% and 72%,respectively. The high catalytic activity of FeI IIGluS iW is resulted from hydrogen bonding of H2O2 on the FeI IIGluS iW surface. The enhanced degradation of 4-CP under irradiation arises from simultaneous oxidation of 4-CP through Fenton-like and photocatalytic processes respectively catalyzed by ferric iron and the SiW 12O404- hetropolyanion in FeШGluS iW.展开更多
The biodegradations of phenol and 4-chlorophenol (4-cp) were studied using the mutant strain CTM 2 obtained by the He-Ne laser irradiation on wild-type Candida tropicalis. The results showed that the capacity of the...The biodegradations of phenol and 4-chlorophenol (4-cp) were studied using the mutant strain CTM 2 obtained by the He-Ne laser irradiation on wild-type Candida tropicalis. The results showed that the capacity of the CTM 2 to biodegrade 4-cp was increased up to 400 mg·L^-1 within 59.5 h. In the dual-substrate biodegradation both velocity and capacity of the CTM 2 to degrade 4-cp increased with low-concentration phenol. A totalof 400 mg·L^-1 4-cp was completely degraded within 50.'5 h in thepresence of 300 mg·L^-1 phenol. The maximum 4:cp biodegegradation could reach 440 mg·L^1 with 120 mg·L^1 phenol. Low-concentration 4-cp caused great inhibition on the CTM 2 to degrade phenol. In addition, the kinetic behaviors were described using the kinetic model proposed in this lab.展开更多
基金supported by the National Natural Science Foundation of China(51268001)~~
文摘A novel iron-glutamate-silicotungstate ternary complex(FeШGluS iW) was synthesized from ferric chloride(FeI II),glutamic acid(Glu),and silicotungstic acid(SiW),and used as a heterogeneous Fenton-like catalyst for 4-chlorophenol(4-CP) degradation at neutral pH value. The prepared FeШGluS iW was characterized using inductively coupled plasma atomic emission spectroscopy,thermogravimetry,Fourier-transform infrared spectroscopy,ultraviolet-visible diffuse reflectance spectroscopy,X-ray diffraction,and field-emission scanning electron microscopy. The results showed that FeШGluS iW has the formula [Fe(C5H8NO4)(H2O)]2SiW 12O40?13H2O,with glutamate moiety and Keggin-structured SiW 12O404- heteropolyanion. The catalyst showed high catalytic activity in 4-CP degradation in the dark and under irradiation. Under the conditions of 4-CP 100 mg/L,FeШGluS iW 1.0 g/L,H2O2 20 mmol/L,and pH = 6.5,4-CP was completely decomposed in 40 min in the dark and in 15 min under irradiation. When the reaction time was prolonged to 2 h,the corresponding total organic carbon removals under dark and irradiated conditions were ca. 27% and 72%,respectively. The high catalytic activity of FeI IIGluS iW is resulted from hydrogen bonding of H2O2 on the FeI IIGluS iW surface. The enhanced degradation of 4-CP under irradiation arises from simultaneous oxidation of 4-CP through Fenton-like and photocatalytic processes respectively catalyzed by ferric iron and the SiW 12O404- hetropolyanion in FeШGluS iW.
基金Supported by the science and Technology Innovative Talents Foundation of China (2006RFQXS070), the Youth Academic Cadreman Project of Heilongjiang Province (1152G068), Scientific Research Fund of Heilongjiang Province (11523063) and the Science Foundation for Post Doctorate of China (20070410268).
文摘The biodegradations of phenol and 4-chlorophenol (4-cp) were studied using the mutant strain CTM 2 obtained by the He-Ne laser irradiation on wild-type Candida tropicalis. The results showed that the capacity of the CTM 2 to biodegrade 4-cp was increased up to 400 mg·L^-1 within 59.5 h. In the dual-substrate biodegradation both velocity and capacity of the CTM 2 to degrade 4-cp increased with low-concentration phenol. A totalof 400 mg·L^-1 4-cp was completely degraded within 50.'5 h in thepresence of 300 mg·L^-1 phenol. The maximum 4:cp biodegegradation could reach 440 mg·L^1 with 120 mg·L^1 phenol. Low-concentration 4-cp caused great inhibition on the CTM 2 to degrade phenol. In addition, the kinetic behaviors were described using the kinetic model proposed in this lab.