Transformation of lignin to valuable chemicals via sustainable pathways is recognized as one of the most efficient ways to explore its value and replace the nonrenewable petroleum resource. In this work, an environmen...Transformation of lignin to valuable chemicals via sustainable pathways is recognized as one of the most efficient ways to explore its value and replace the nonrenewable petroleum resource. In this work, an environmental-friendly transfer hydrogenation process has been developed to convert lignin derived2,6-dimethoxybenzoquinone to 1,4-cyclohexanediol. Compared with previous work under hydrogen pressure(30 bar), this process uses isopropanol as both solvent and hydrogen donor, which significantly simply the operation process. The core of this study is the design and preparation of Mn modified Raney Ni catalysts by ball milling process. A series of Raney Ni Mn catalysts with different ball milling time and Mn content were prepared and investigated. Characterizations by X-ray diffraction(XRD), X-ray photoelectron spectroscopy(XPS), scanning electron microscope(SEM) and transmission electron microscope(TEM) etc. showed that Ni Mn Al alloy was formed during the ball milling process and then transformed to Ni Mn alloy after treatment by aqueous Na OH. After optimization, a yield as high as 86.1% could be achieved for 1,4-cyclohexanediol at 200℃ in only 1 h.展开更多
基金supported by the Fundamental Research Funds for the Central Universities (BLX202132)the Foreign expert program (G2022109001L)+1 种基金the Beijing Forestry University Outstanding Young Talent Cultivation Project (2019JQ03005)the Young Tip-top Talent Project of Science and Technology Innovation by National Forestry and Grassland Administration of China(2019132609)。
文摘Transformation of lignin to valuable chemicals via sustainable pathways is recognized as one of the most efficient ways to explore its value and replace the nonrenewable petroleum resource. In this work, an environmental-friendly transfer hydrogenation process has been developed to convert lignin derived2,6-dimethoxybenzoquinone to 1,4-cyclohexanediol. Compared with previous work under hydrogen pressure(30 bar), this process uses isopropanol as both solvent and hydrogen donor, which significantly simply the operation process. The core of this study is the design and preparation of Mn modified Raney Ni catalysts by ball milling process. A series of Raney Ni Mn catalysts with different ball milling time and Mn content were prepared and investigated. Characterizations by X-ray diffraction(XRD), X-ray photoelectron spectroscopy(XPS), scanning electron microscope(SEM) and transmission electron microscope(TEM) etc. showed that Ni Mn Al alloy was formed during the ball milling process and then transformed to Ni Mn alloy after treatment by aqueous Na OH. After optimization, a yield as high as 86.1% could be achieved for 1,4-cyclohexanediol at 200℃ in only 1 h.