The use of transgenic crops has grown significantly over the past couple of decades. Many agronomic crops produced today are tolerant to glyphosate. Glyphosate-tolerant crops were commercially introduced in 1996, and,...The use of transgenic crops has grown significantly over the past couple of decades. Many agronomic crops produced today are tolerant to glyphosate. Glyphosate-tolerant crops were commercially introduced in 1996, and, about nine years later, glyphosate-resistant Palmer amaranth was confirmed in Georgia. Glyphosate-resistant weeds arose from reliance on postemergence only glyphosate programs to control weeds in crops. New transgenic traits for glufosinate and 2,4-D choline have been developed, and evaluations of stacked traits and concurrent use of multiple herbicides have provided additional tools in the management of glyphosate-resistant weeds. Field experiments were conducted in 2012 and 2013 at the Edisto Research and Education Center near Blackville, SC, USA to determine the efficacy of 2,4-D-based herbicide programs in transgenic cotton tolerant to 2,4-D choline, glyphosate, and glufosinate. The treatments provided good to excellent Palmer amaranth and pitted morningglory control in 2012 and 2013. Seed cotton yields across treatments ranged from 0 to 2057 kg ha-1. This new trait technology package in cotton permits in-season postemergence use of 2,4-D choline, a herbicide mode of action not previously used postemergence in cotton, which can control resistant weeds, including Palmer amaranth if applied at the proper growth stage.展开更多
文摘The use of transgenic crops has grown significantly over the past couple of decades. Many agronomic crops produced today are tolerant to glyphosate. Glyphosate-tolerant crops were commercially introduced in 1996, and, about nine years later, glyphosate-resistant Palmer amaranth was confirmed in Georgia. Glyphosate-resistant weeds arose from reliance on postemergence only glyphosate programs to control weeds in crops. New transgenic traits for glufosinate and 2,4-D choline have been developed, and evaluations of stacked traits and concurrent use of multiple herbicides have provided additional tools in the management of glyphosate-resistant weeds. Field experiments were conducted in 2012 and 2013 at the Edisto Research and Education Center near Blackville, SC, USA to determine the efficacy of 2,4-D-based herbicide programs in transgenic cotton tolerant to 2,4-D choline, glyphosate, and glufosinate. The treatments provided good to excellent Palmer amaranth and pitted morningglory control in 2012 and 2013. Seed cotton yields across treatments ranged from 0 to 2057 kg ha-1. This new trait technology package in cotton permits in-season postemergence use of 2,4-D choline, a herbicide mode of action not previously used postemergence in cotton, which can control resistant weeds, including Palmer amaranth if applied at the proper growth stage.