The formation conditions of MgB2 in 2LiBH4 + MgH2 system during dehydrogenation were investigated and its mechanism was discussed. The results show that direct decomposition of LiBH4 is suppressed under relative high...The formation conditions of MgB2 in 2LiBH4 + MgH2 system during dehydrogenation were investigated and its mechanism was discussed. The results show that direct decomposition of LiBH4 is suppressed under relative higher initial dehydrogenation pressure of 4.0×10^5 Pa, wherein LiBH4 reacts with Mg to yield MgB2, and 9.16% (mass fraction) hydrogen is released within 9.6 h at 450 ℃. However, under relatively lower initial dehydrogenation pressure of 1.0×10^2 Pa, LiBH4 decomposes independently instead of reacting with Mg, resulting in no formation of MgB2, and 7.91% hydrogen is desorbed within 5.2 h at 450 ℃. It is found that the dehydrogenation of 2LiBH4 + MgH2 system proceeds more completely and more hydrogen desorption amount can be obtained within a definite time by forming MgB2. Furthermore, it is proposed that the formation process of MgB2 includes incubation period and nucleus growth process. Experimental results show that the formation process of MgB2, especially the incubation period, is promoted by increasing initial dehydrogenation pressure at constant temperature, and the incubation period is also influenced greatly by dehydrogenation temperature.展开更多
With the development of reaction kinetics and transfer science, the modeling of NOx formation plays more and more important roles in the protection of environment and the design of combustion reactors; in this case,tu...With the development of reaction kinetics and transfer science, the modeling of NOx formation plays more and more important roles in the protection of environment and the design of combustion reactors; in this case,turbulence-chemistry model and NOx formation model are the two most important aspects. For thermal NOx mechanism, this article studied the CH4/air system and applied a set of latest NO formation rate constants published at the Leed University which replaced the original model code in FLUENT to increase its precision on prediction of NO concentration. The realizable k-ε model, Reynold Stress model and standard k-ε model were also investigated to predict the turbulent combustion reaction, which indicated that the simulation results of velocities, temperatures and concentrations of combustion productions by the standard k-ε model were in good accordance with the experimental data. With the application of the simulation results to the experimental data to fit some important kinetic parameters in the equation of O atom model and revision of the equation later, this article obtained a new NO formation rate model. It has been proved that the prediction of the developed model coincides well with the measurements.展开更多
High speed milling experiments using nitrogen-oil-mist as the cutting medium were carried out to investigate the characteristics of chip formation for Ti-6Al-4V alloy.Within the range of conditions employed(cutting sp...High speed milling experiments using nitrogen-oil-mist as the cutting medium were carried out to investigate the characteristics of chip formation for Ti-6Al-4V alloy.Within the range of conditions employed(cutting speed,vc=190-300 m/min;cutting depth of axial,ap=5,7 mm),saw-tooth chips were produced in these experiments.During the macro and micro analysis of the Ti-6Al-4V chips,an optical microscope and a scanning electron microscope(SEM)were used to study the microstructure and the morphology of the chips,and the X-ray photoelectron spectroscopy(XPS)was employed for chemical analysis.Comparisons were made to study the influence of different cutting media(nitrogen-oil-mist,air-oil-mist and dry cutting condition)on chip formation.Results indicate that cutting media have significant effects on chip formation.Nitrogen-oil-mist is more suitable for improving the contact condition at chip-tool interface and increasing the tool life in high speed milling of Ti-6Al-4V alloy than air-oil-mist and dry cutting.展开更多
In positive-ion fast atom bombardment (FAB) mass spectrometry, when mono- and di- saccharides are mixed with an appropriate amount of NH4Cl, a highly abundan peak [M+NH4]+appers in FAB mass spectra . From the adduct ...In positive-ion fast atom bombardment (FAB) mass spectrometry, when mono- and di- saccharides are mixed with an appropriate amount of NH4Cl, a highly abundan peak [M+NH4]+appers in FAB mass spectra . From the adduct ion [M+NH4]+, the molecular weights of mono- and di- saccharides can be determined definitively展开更多
The Co_(3)O_(4)nanoparticles,dominated by a catalytically active(110)lattice plane,were synthesized as a low-temperature NO_(x) adsorbent to control the cold start emissions from vehicles.These nanoparticles boast a s...The Co_(3)O_(4)nanoparticles,dominated by a catalytically active(110)lattice plane,were synthesized as a low-temperature NO_(x) adsorbent to control the cold start emissions from vehicles.These nanoparticles boast a substantial quantity of active chemisorbed oxygen and lattice oxygen,which exhibited a NO_(x) uptake capacity commensurate with Pd/SSZ-13 at 100℃.The primary NO_(x) release temperature falls within a temperature range of 200-350℃,making it perfectly suitable for diesel engines.The characterization results demonstrate that chemisorbed oxygen facilitate nitro/nitrites intermediates formation,contributing to the NO_(x) storage at 100℃,while the nitrites begin to decompose within the 150-200℃range.Fortunately,lattice oxygen likely becomes involved in the activation of nitrites into more stable nitrate within this particular temperature range.The concurrent processes of nitrites decomposition and its conversion to nitrates results in a minimal NO_(x) release between the temperatures of 150-200℃.The nitrate formed via lattice oxygen mainly induces the NO_(x) to be released as NO_(2) within a temperature range of 200-350℃,which is advantageous in enhancing the NO_(x) activity of downstream NH_(3)-SCR catalysts,by boosting the fast SCR reaction pathway.Thanks to its low cost,considerable NO_(x) absorption capacity,and optimal release temperature,Co_(3)O_(4)demonstrates potential as an effective material for passive NO_(x) adsorber applications.展开更多
This paper reports that low-temperature heat capacities of 4-(2-aminoethyl)-phenol (C8H11NO) are measured by a precision automated adiabatic calorimeter over the temperature range from 78 to 400 K. A polynomial eq...This paper reports that low-temperature heat capacities of 4-(2-aminoethyl)-phenol (C8H11NO) are measured by a precision automated adiabatic calorimeter over the temperature range from 78 to 400 K. A polynomial equation of heat capacities as a function of the temperature was fitted by the least square method. Based on the fitted polynomial, the smoothed heat capacities and thermodynamic functions of the compound relative to the standard reference temperature 298.15K were calculated and tabulated at the interval of 5K. The energy equivalent, εcalor, of the oxygen-bomb combustion calorimeter has been determined from 0.68g of NIST 39i benzoic acid to be εcalor=(14674.69±17.49)J·K^-1. The constant-volume energy of combustion of the compound at T=298.15 K was measured by a precision oxygen-bomb combustion calorimeter to be ΔcU=-(32374.25±12.93)J·g^-1. The standard molar enthalpy of combustion for the compound was calculated to be ΔcHm = -(4445.47 ± 1.77) kJ·mol^-1 according to the definition of enthalpy of combustion and other thermodynamic principles. Finally, the standard molar enthalpy of formation of the compound was derived to be ΔfHm(C8H11NO, s)=-(274.68 ±2.06) kJ·mol^-1, in accordance with Hess law.展开更多
The formation mechanism for the regular tetrahedral structure of Li4 cluster is proposed. The curve of the total energy versus the separation R between the two nuclei has been calculated by using the method of Gou's ...The formation mechanism for the regular tetrahedral structure of Li4 cluster is proposed. The curve of the total energy versus the separation R between the two nuclei has been calculated by using the method of Gou's modified arrangement channel quantum mechanics (MACQM). The result shows that the curve has a minimal energy of-29.8279 a.u. at R = 14.50 ao. When R approaches infinity the total energy of four lithium atoms has the value of-29.7121 a.u. So the binding energy of Li4 with respect to four lithium atoms is the difference of 0.1158 a.u.for the above two energy values. Therefore the binding energy per atom for Lh is 0.020 a.u., or 0.7878 eV, which is greater than the binding energy per atom of 0.453 eV for Li2, the binding energy per atom of 0.494 eV for Lia and the binding energy per atom of 0.632 eV for Li5 calculated previously by us. This means that the Li4 cluster may be formed stably in a regular tetrahedral structure of side length R = 14.50 ao with a greater binding energy.展开更多
With the development of reaction kinetics and transfer science, the modeling of NOx formation plays more and more important roles in the protection of environment and the design of combustion reactors; in this case, t...With the development of reaction kinetics and transfer science, the modeling of NOx formation plays more and more important roles in the protection of environment and the design of combustion reactors; in this case, turbulence-chemistry model and NOx formation model are the two most important aspects. For thermal NOx mechanism, this article studied the CH4/air system and applied a set of latest NO formation rate constants published at the Leed University which replaced the original model code in FLUENT to increase its precision on prediction of NO concentration. The realizable k-ε model, Reynold Stress model and standard k-ε model were also investigated to predict the turbulent combustion reaction, which indicated that the simulation results of velocities, temperatures and concentrations of combustion productions by the standard k-ε model were in good accordance with the experi- mental data. With the application of the simulation results to the experimental data to fit some important kinetic pa- rameters in the equation of O atom model and revision of the equation later, this article obtained a new NO forma- tion rate model. It has been proved that the prediction of the developed model coincides well with the measure- ments.展开更多
The original gas reservoirs in different areas and different layers of the Triassic Xujiahe Formation in the central Sichuan Basin are studied to reveal the relationships of iC4/nC4 and iC5/nC5 ratios in coal-derived ...The original gas reservoirs in different areas and different layers of the Triassic Xujiahe Formation in the central Sichuan Basin are studied to reveal the relationships of iC4/nC4 and iC5/nC5 ratios in coal-derived gas components with maturity using conventional natural gas geochemical research methods. The testing results of 73 gas samples from 8 gas fields show that the iC4/nC4 and iC5/nC5 ratios in coal-derived gas have a good positive correlation, and the correlation coefficient is above 0.8. Both the iC4/nC4 and iC5/nC5 ratios become higher with the increase of natural gas dryness coefficient (C1/C1+) and the methane carbon isotope becoming less negative. These parameters are highly correlated. This study not only reveals characteristics of heavy hydrocarbon isomers generated by coal formation, but also puts forward new identification indicators reflecting the maturity of coal-derived gas, the regression between iC4/nC4, iC5/nC5 and Ro, which can provide an important reference for maturity, migration and accumulation of coal-derived gas, and late stage reformation of coal-derived gas reservoirs.展开更多
Al2O3-Ni interface formed under vacuum condition is non-wetting and weak. Severe instantaneous intedecial reaction (i.e. wetting) at the Al2O3-Ni interface promoted by oxygen can create a strengthened interface. The N...Al2O3-Ni interface formed under vacuum condition is non-wetting and weak. Severe instantaneous intedecial reaction (i.e. wetting) at the Al2O3-Ni interface promoted by oxygen can create a strengthened interface. The NiAl2O4 spinel-Ni intedece is weak and growth of the spinel interphase is detrimental to the Al2O3-Ni intedecial bonding. A proper control of the oxygen partial pressure can achieve wetting while avoiding the existence of spinel at the interface, producing stronger interfaces by both mechanical interlocking and more intimate chemical bonding in an Al2O3-20 vol pct Ni composite.展开更多
In this paper we describe how progressive download and adaptive streaming can be combined into a simple and efficient streaming framework. Based on the MPEG-4 file format (MP4) we use HTTP for transport and argue that...In this paper we describe how progressive download and adaptive streaming can be combined into a simple and efficient streaming framework. Based on the MPEG-4 file format (MP4) we use HTTP for transport and argue that these two components are sufficient for specifying an open streaming architecture. The client selects appropriate chunks from the MP4 file to be transferred based on (1) the header information (i.e. the 'moov' box) in the first part of the file and (2) his observation of network throughput. The framework is completely client driven which allows for better server scalability and reduces signalling overhead. We discuss architecture and implementation issues such as complexity, interoperability and scalability and compare to 3GPP PSS Re1-6 adaptive streaming when appropriate. Measurements from a simple MP4/HTTP streaming client are presented showing that appropriate chunks are selected such that increased reliability is achieved.展开更多
The kinetics of mesophase formation of a lyotropic aromatic polyamide from isotropic state has been studied by means of depolarized light intensity. Avrami type analysis of the data gives an exponent close to 1, which...The kinetics of mesophase formation of a lyotropic aromatic polyamide from isotropic state has been studied by means of depolarized light intensity. Avrami type analysis of the data gives an exponent close to 1, which suggests the nucleation followed by one-dimensional growth. No influence of blending flexible chain from nylon 6 to the aromatic polyamide on the kinetics of mesophase formation was observed.展开更多
BACKGROUND Regenerating gene 4(REG4)has been proved to be carcinogenic in some cancers,but its manifestation and possible carcinogenic mechanisms in colorectal cancer(CRC)have not yet been elucidated.Our previous stud...BACKGROUND Regenerating gene 4(REG4)has been proved to be carcinogenic in some cancers,but its manifestation and possible carcinogenic mechanisms in colorectal cancer(CRC)have not yet been elucidated.Our previous study found that the drug resistance of CRC cells may be closely linked to their fat metabolism.AIM To explore the role of REG4 in CRC and its association with lipid droplet formation and chemoresistance.METHODS We conducted a meta-analysis and bioinformatics and pathological analyses of REG4 expression in CRC.The effects of REG4 on the phenotypes and related protein expression were also investigated in CRC cells.We detected the impacts of REG4 on the chemoresistance and lipid droplet formation in CRC cells.Finally,we analyzed how REG4 regulated the transcription and proteasomal degradation of lipogenic enzymes in CRC cells.RESULTS Compared to normal mucosa,REG4 mRNA expression was high in CRC(P<0.05)but protein expression was low.An inverse correlation existed between lymph node and distant metastases,tumor-node-metastasis staging or short overall survival and REG4 mRNA overexpression(P<0.05),but vice versa for REG4 protein expression.REG4-related genes included:Chemokine activity;taste receptors;protein-DNA and DNA packing complexes;nucleosomes and chromatin;generation of second messenger molecules;programmed cell death signals;epigenetic regulation and DNA methylation;transcription repression and activation by DNA binding;insulin signaling pathway;sugar metabolism and transfer;and neurotransmitter receptors(P<0.05).REG4 exposure or overexpression promoted proliferation,antiapoptosis,migration,and invasion of DLD-1 cells in an autocrine or paracrine manner by activating the epidermal growth factor receptor-phosphoinositide 3-kinase-Akt-nuclear factor-κB pathway.REG4 was involved in chemoresistance not through de novo lipogenesis,but lipid droplet assembly.REG4 inhibited the transcription of acetyl-CoA carboxylase 1(ACC1)and ATP-citrate lyase(ACLY)by disassociating the complex formation of anti-acetyl(AC)-acetyl-histone 3-AC-histone 4-inhibitor of growth protein-5-si histone deacetylase;-sterol-regulatory element binding protein 1 in their promoters and induced proteasomal degradation of ACC1 or ACLY.CONCLUSION REG4 may be involved in chemoresistance through lipid droplet assembly.REG4 reduces expression of de novo lipid synthesis key enzymes by inhibiting transcription and promoting ubiquitination-mediated proteasomal degradation.展开更多
基金Project (2010CB631300) supported by the National Basic Research Program of China Project (50631020) supported by the National Natural Science Foundation of China+1 种基金 Project (NCET-07-0741) supported by the Program for New Century Excellent Talents in Universities, ChinaProject (20090101110050) supported by the University Doctoral Foundation of the Ministry of Education, China
文摘The formation conditions of MgB2 in 2LiBH4 + MgH2 system during dehydrogenation were investigated and its mechanism was discussed. The results show that direct decomposition of LiBH4 is suppressed under relative higher initial dehydrogenation pressure of 4.0×10^5 Pa, wherein LiBH4 reacts with Mg to yield MgB2, and 9.16% (mass fraction) hydrogen is released within 9.6 h at 450 ℃. However, under relatively lower initial dehydrogenation pressure of 1.0×10^2 Pa, LiBH4 decomposes independently instead of reacting with Mg, resulting in no formation of MgB2, and 7.91% hydrogen is desorbed within 5.2 h at 450 ℃. It is found that the dehydrogenation of 2LiBH4 + MgH2 system proceeds more completely and more hydrogen desorption amount can be obtained within a definite time by forming MgB2. Furthermore, it is proposed that the formation process of MgB2 includes incubation period and nucleus growth process. Experimental results show that the formation process of MgB2, especially the incubation period, is promoted by increasing initial dehydrogenation pressure at constant temperature, and the incubation period is also influenced greatly by dehydrogenation temperature.
文摘With the development of reaction kinetics and transfer science, the modeling of NOx formation plays more and more important roles in the protection of environment and the design of combustion reactors; in this case,turbulence-chemistry model and NOx formation model are the two most important aspects. For thermal NOx mechanism, this article studied the CH4/air system and applied a set of latest NO formation rate constants published at the Leed University which replaced the original model code in FLUENT to increase its precision on prediction of NO concentration. The realizable k-ε model, Reynold Stress model and standard k-ε model were also investigated to predict the turbulent combustion reaction, which indicated that the simulation results of velocities, temperatures and concentrations of combustion productions by the standard k-ε model were in good accordance with the experimental data. With the application of the simulation results to the experimental data to fit some important kinetic parameters in the equation of O atom model and revision of the equation later, this article obtained a new NO formation rate model. It has been proved that the prediction of the developed model coincides well with the measurements.
基金the National Natural Science Foundation of China (Grant No. 50175051)
文摘High speed milling experiments using nitrogen-oil-mist as the cutting medium were carried out to investigate the characteristics of chip formation for Ti-6Al-4V alloy.Within the range of conditions employed(cutting speed,vc=190-300 m/min;cutting depth of axial,ap=5,7 mm),saw-tooth chips were produced in these experiments.During the macro and micro analysis of the Ti-6Al-4V chips,an optical microscope and a scanning electron microscope(SEM)were used to study the microstructure and the morphology of the chips,and the X-ray photoelectron spectroscopy(XPS)was employed for chemical analysis.Comparisons were made to study the influence of different cutting media(nitrogen-oil-mist,air-oil-mist and dry cutting condition)on chip formation.Results indicate that cutting media have significant effects on chip formation.Nitrogen-oil-mist is more suitable for improving the contact condition at chip-tool interface and increasing the tool life in high speed milling of Ti-6Al-4V alloy than air-oil-mist and dry cutting.
文摘In positive-ion fast atom bombardment (FAB) mass spectrometry, when mono- and di- saccharides are mixed with an appropriate amount of NH4Cl, a highly abundan peak [M+NH4]+appers in FAB mass spectra . From the adduct ion [M+NH4]+, the molecular weights of mono- and di- saccharides can be determined definitively
基金supported by the National Natural Science Foundation of China(22006044,22006043)External Cooperation Program of Science and Technology Planning of Fujian Province(2023I0018)+2 种基金the Fujian Province Science and Technology Program Funds(2020H6013)the National Engineering Laboratory for Mobile Source Emission Control Technology(NELMS2020A03)the Scientific Research Funds of Huaqiao University(605-50Y200270001)。
文摘The Co_(3)O_(4)nanoparticles,dominated by a catalytically active(110)lattice plane,were synthesized as a low-temperature NO_(x) adsorbent to control the cold start emissions from vehicles.These nanoparticles boast a substantial quantity of active chemisorbed oxygen and lattice oxygen,which exhibited a NO_(x) uptake capacity commensurate with Pd/SSZ-13 at 100℃.The primary NO_(x) release temperature falls within a temperature range of 200-350℃,making it perfectly suitable for diesel engines.The characterization results demonstrate that chemisorbed oxygen facilitate nitro/nitrites intermediates formation,contributing to the NO_(x) storage at 100℃,while the nitrites begin to decompose within the 150-200℃range.Fortunately,lattice oxygen likely becomes involved in the activation of nitrites into more stable nitrate within this particular temperature range.The concurrent processes of nitrites decomposition and its conversion to nitrates results in a minimal NO_(x) release between the temperatures of 150-200℃.The nitrate formed via lattice oxygen mainly induces the NO_(x) to be released as NO_(2) within a temperature range of 200-350℃,which is advantageous in enhancing the NO_(x) activity of downstream NH_(3)-SCR catalysts,by boosting the fast SCR reaction pathway.Thanks to its low cost,considerable NO_(x) absorption capacity,and optimal release temperature,Co_(3)O_(4)demonstrates potential as an effective material for passive NO_(x) adsorber applications.
基金supported by the National Natural Science Foundation of China (Grant No 20673050)
文摘This paper reports that low-temperature heat capacities of 4-(2-aminoethyl)-phenol (C8H11NO) are measured by a precision automated adiabatic calorimeter over the temperature range from 78 to 400 K. A polynomial equation of heat capacities as a function of the temperature was fitted by the least square method. Based on the fitted polynomial, the smoothed heat capacities and thermodynamic functions of the compound relative to the standard reference temperature 298.15K were calculated and tabulated at the interval of 5K. The energy equivalent, εcalor, of the oxygen-bomb combustion calorimeter has been determined from 0.68g of NIST 39i benzoic acid to be εcalor=(14674.69±17.49)J·K^-1. The constant-volume energy of combustion of the compound at T=298.15 K was measured by a precision oxygen-bomb combustion calorimeter to be ΔcU=-(32374.25±12.93)J·g^-1. The standard molar enthalpy of combustion for the compound was calculated to be ΔcHm = -(4445.47 ± 1.77) kJ·mol^-1 according to the definition of enthalpy of combustion and other thermodynamic principles. Finally, the standard molar enthalpy of formation of the compound was derived to be ΔfHm(C8H11NO, s)=-(274.68 ±2.06) kJ·mol^-1, in accordance with Hess law.
基金The project supported by National Natural Science Foundation of China under Grant No. 19974027
文摘The formation mechanism for the regular tetrahedral structure of Li4 cluster is proposed. The curve of the total energy versus the separation R between the two nuclei has been calculated by using the method of Gou's modified arrangement channel quantum mechanics (MACQM). The result shows that the curve has a minimal energy of-29.8279 a.u. at R = 14.50 ao. When R approaches infinity the total energy of four lithium atoms has the value of-29.7121 a.u. So the binding energy of Li4 with respect to four lithium atoms is the difference of 0.1158 a.u.for the above two energy values. Therefore the binding energy per atom for Lh is 0.020 a.u., or 0.7878 eV, which is greater than the binding energy per atom of 0.453 eV for Li2, the binding energy per atom of 0.494 eV for Lia and the binding energy per atom of 0.632 eV for Li5 calculated previously by us. This means that the Li4 cluster may be formed stably in a regular tetrahedral structure of side length R = 14.50 ao with a greater binding energy.
文摘With the development of reaction kinetics and transfer science, the modeling of NOx formation plays more and more important roles in the protection of environment and the design of combustion reactors; in this case, turbulence-chemistry model and NOx formation model are the two most important aspects. For thermal NOx mechanism, this article studied the CH4/air system and applied a set of latest NO formation rate constants published at the Leed University which replaced the original model code in FLUENT to increase its precision on prediction of NO concentration. The realizable k-ε model, Reynold Stress model and standard k-ε model were also investigated to predict the turbulent combustion reaction, which indicated that the simulation results of velocities, temperatures and concentrations of combustion productions by the standard k-ε model were in good accordance with the experi- mental data. With the application of the simulation results to the experimental data to fit some important kinetic pa- rameters in the equation of O atom model and revision of the equation later, this article obtained a new NO forma- tion rate model. It has been proved that the prediction of the developed model coincides well with the measure- ments.
基金Supported by the National Natural Science Foundation of China(41872162)
文摘The original gas reservoirs in different areas and different layers of the Triassic Xujiahe Formation in the central Sichuan Basin are studied to reveal the relationships of iC4/nC4 and iC5/nC5 ratios in coal-derived gas components with maturity using conventional natural gas geochemical research methods. The testing results of 73 gas samples from 8 gas fields show that the iC4/nC4 and iC5/nC5 ratios in coal-derived gas have a good positive correlation, and the correlation coefficient is above 0.8. Both the iC4/nC4 and iC5/nC5 ratios become higher with the increase of natural gas dryness coefficient (C1/C1+) and the methane carbon isotope becoming less negative. These parameters are highly correlated. This study not only reveals characteristics of heavy hydrocarbon isomers generated by coal formation, but also puts forward new identification indicators reflecting the maturity of coal-derived gas, the regression between iC4/nC4, iC5/nC5 and Ro, which can provide an important reference for maturity, migration and accumulation of coal-derived gas, and late stage reformation of coal-derived gas reservoirs.
文摘Al2O3-Ni interface formed under vacuum condition is non-wetting and weak. Severe instantaneous intedecial reaction (i.e. wetting) at the Al2O3-Ni interface promoted by oxygen can create a strengthened interface. The NiAl2O4 spinel-Ni intedece is weak and growth of the spinel interphase is detrimental to the Al2O3-Ni intedecial bonding. A proper control of the oxygen partial pressure can achieve wetting while avoiding the existence of spinel at the interface, producing stronger interfaces by both mechanical interlocking and more intimate chemical bonding in an Al2O3-20 vol pct Ni composite.
文摘In this paper we describe how progressive download and adaptive streaming can be combined into a simple and efficient streaming framework. Based on the MPEG-4 file format (MP4) we use HTTP for transport and argue that these two components are sufficient for specifying an open streaming architecture. The client selects appropriate chunks from the MP4 file to be transferred based on (1) the header information (i.e. the 'moov' box) in the first part of the file and (2) his observation of network throughput. The framework is completely client driven which allows for better server scalability and reduces signalling overhead. We discuss architecture and implementation issues such as complexity, interoperability and scalability and compare to 3GPP PSS Re1-6 adaptive streaming when appropriate. Measurements from a simple MP4/HTTP streaming client are presented showing that appropriate chunks are selected such that increased reliability is achieved.
基金This work was supported by Academia Sinica selected Research Program and National Natural Science Foundation of China
文摘The kinetics of mesophase formation of a lyotropic aromatic polyamide from isotropic state has been studied by means of depolarized light intensity. Avrami type analysis of the data gives an exponent close to 1, which suggests the nucleation followed by one-dimensional growth. No influence of blending flexible chain from nylon 6 to the aromatic polyamide on the kinetics of mesophase formation was observed.
基金Natural Science Foundation of Hebei Province,No.21377772DNo.H2022406034National Natural Scientific Foundation of China,No.81672700.
文摘BACKGROUND Regenerating gene 4(REG4)has been proved to be carcinogenic in some cancers,but its manifestation and possible carcinogenic mechanisms in colorectal cancer(CRC)have not yet been elucidated.Our previous study found that the drug resistance of CRC cells may be closely linked to their fat metabolism.AIM To explore the role of REG4 in CRC and its association with lipid droplet formation and chemoresistance.METHODS We conducted a meta-analysis and bioinformatics and pathological analyses of REG4 expression in CRC.The effects of REG4 on the phenotypes and related protein expression were also investigated in CRC cells.We detected the impacts of REG4 on the chemoresistance and lipid droplet formation in CRC cells.Finally,we analyzed how REG4 regulated the transcription and proteasomal degradation of lipogenic enzymes in CRC cells.RESULTS Compared to normal mucosa,REG4 mRNA expression was high in CRC(P<0.05)but protein expression was low.An inverse correlation existed between lymph node and distant metastases,tumor-node-metastasis staging or short overall survival and REG4 mRNA overexpression(P<0.05),but vice versa for REG4 protein expression.REG4-related genes included:Chemokine activity;taste receptors;protein-DNA and DNA packing complexes;nucleosomes and chromatin;generation of second messenger molecules;programmed cell death signals;epigenetic regulation and DNA methylation;transcription repression and activation by DNA binding;insulin signaling pathway;sugar metabolism and transfer;and neurotransmitter receptors(P<0.05).REG4 exposure or overexpression promoted proliferation,antiapoptosis,migration,and invasion of DLD-1 cells in an autocrine or paracrine manner by activating the epidermal growth factor receptor-phosphoinositide 3-kinase-Akt-nuclear factor-κB pathway.REG4 was involved in chemoresistance not through de novo lipogenesis,but lipid droplet assembly.REG4 inhibited the transcription of acetyl-CoA carboxylase 1(ACC1)and ATP-citrate lyase(ACLY)by disassociating the complex formation of anti-acetyl(AC)-acetyl-histone 3-AC-histone 4-inhibitor of growth protein-5-si histone deacetylase;-sterol-regulatory element binding protein 1 in their promoters and induced proteasomal degradation of ACC1 or ACLY.CONCLUSION REG4 may be involved in chemoresistance through lipid droplet assembly.REG4 reduces expression of de novo lipid synthesis key enzymes by inhibiting transcription and promoting ubiquitination-mediated proteasomal degradation.