Background:The dysregulation of Isocitrate dehydrogenase(IDH)and the subsequent production of 2-Hydroxyglutrate(2HG)may alter the expression of epigenetic proteins in Grade 4 astrocytoma.The interplay mechanism betwee...Background:The dysregulation of Isocitrate dehydrogenase(IDH)and the subsequent production of 2-Hydroxyglutrate(2HG)may alter the expression of epigenetic proteins in Grade 4 astrocytoma.The interplay mechanism between IDH,O-6-methylguanine-DNA methyltransferase(MGMT)-promoter methylation,and protein methyltransferase proteins-5(PRMT5)activity,with tumor progression has never been described.Methods:A retrospective cohort of 34 patients with G4 astrocytoma is classified into IDH-mutant and IDH-wildtype tumors.Both groups were tested for MGMT-promoter methylation and PRMT5 through methylation-specific and gene expression PCR analysis.Inter-cohort statistical significance was evaluated.Results:Both IDH-mutant WHO grade 4 astrocytomas(n=22,64.7%)and IDH-wildtype glioblastomas(n=12,35.3%)had upregulated PRMT5 gene expression except in one case.Out of the 22 IDH-mutant tumors,10(45.5%)tumors showed MGMT-promoter methylation and 12(54.5%)tumors had unmethylated MGMT.All IDH-wildtype tumors had unmethylated MGMT.There was a statistically significant relationship between MGMT-promoter methylation and IDH in G4 astrocytoma(p-value=0.006).Statistically significant differences in progression-free survival(PFS)were also observed among all G4 astrocytomas that expressed PRMT5 and received either temozolomide(TMZ)or TMZ plus other chemotherapies,regardless of their IDH or MGMT-methylation status(p-value=0.0014).Specifically,IDH-mutant tumors that had upregulated PRMT5 activity and MGMT-promoter methylation,who received only TMZ,have exhibited longer PFS.Conclusions:The relationship between PRMT5,MGMT-promoter,and IDH is not tridirectional.However,accumulation of D2-hydroxyglutarate(2-HG),which partially activates 2-OG-dependent deoxygenase,may not affect their activities.In IDH-wildtype glioblastomas,the 2HG-2OG pathway is typically inactive,leading to PRMT5 upregulation.TMZ alone,compared to TMZ-plus,can increase PFS in upregulated PRMT5 tumors.Thus,using a PRMT5 inhibitor in G4 astrocytomas may help in tumor regression.展开更多
Degradation of oxidized or oxidatively modified proteins is an essential part of the cellular antioxidant defense system. 4-Hydroxy-2-nonenal (HNE), a major reactive aldehyde formed by lipid peroxidation, causes many ...Degradation of oxidized or oxidatively modified proteins is an essential part of the cellular antioxidant defense system. 4-Hydroxy-2-nonenal (HNE), a major reactive aldehyde formed by lipid peroxidation, causes many types of cellular damage. HNE-modified proteins are degraded by the ubiquitin-proteasome pathway or the lysosomal pathway. However, our previous studies using U937 cells showed that HNE-modified glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is degraded by cathepsin G. In the present study, we examined whether GAPDH in U937 cells treated with HNE in culture is degraded similarly to that incubated with HNE and U937 cell extract. Treatment with HNE for 10 min in culture decreased GAPDH activity in a concentration dependent manner, but did not affect GAPDH degradation. The proteasome activities were not affected by HNE, but culturing with HNE decreased cathepsin G activity and protein level in a concentration dependent manner. These results suggest that HNE-induced oxidative stress leads to decreased cathepsin G activity and results in the loss of GAPDH degradation. Taken together, our findings indicate that cathepsin G has an important role in the degradation of oxidatively modified GAPDH in U937 cells.展开更多
Aldehyde dehydrogenase 2(ALDH2) is best known for its critical detoxifying role in liver alcohol metabolism. However, ALDH2 dysfunction is also involved in a wide range of human pathophysiological situations and is as...Aldehyde dehydrogenase 2(ALDH2) is best known for its critical detoxifying role in liver alcohol metabolism. However, ALDH2 dysfunction is also involved in a wide range of human pathophysiological situations and is associated with complications such as cardiovascular diseases, diabetes mellitus, neurodegenerative diseases and aging. A growing body of research has shown that ALDH2 provides important protection against oxidative stress and the subsequent loading of toxic aldehydes such as 4-hydroxy-2-nonenal and adducts that occur in human diseases, including ischemia reperfusion injury(IRI). There is increasing evidence of its role in IRI pathophysiology in organs such as heart, brain, small intestine and kidney; however, surprisingly few studies have been carried out in the liver, where ALDH2 is found in abundance. This study reviews the role of ALDH2 in modulating the pathways involved in the pathophysiology of IRI associated with oxidative stress, autophagy and apoptosis. Special emphasis is placed on the role of ALDH2 in different organs, on therapeutic "preconditioning" strategies, and on the use of ALDH2 agonists such as Alda-1, which may become a useful therapeutic tool for preventing the deleterious effects of IRI in organ transplantation.展开更多
Chronic stress is strongly associated with the occurrence and development of depression and cardiovascular disease.Stress can induce altered mitochondrial function and activation of apoptosis in the cardio-cerebral sy...Chronic stress is strongly associated with the occurrence and development of depression and cardiovascular disease.Stress can induce altered mitochondrial function and activation of apoptosis in the cardio-cerebral system.However,it is unknown whether the protein kinase C ε(PKCε)-aldehyde dehydrogenase 2(ALDH2) pathway is altered under chronic stress,and this study sought to address this question.A rat model of depression was established using a chronic unpredictable mild stress(CUMS) protocol.After experiencing CUMS for 4 weeks,the sucrose preference test and the forced swim test verified depressive-like behaviors.Enzyme linked immunosorbent assays showed that ALDH2 activity was decreased in the rat hippocampus and prefrontal cortex,but was not altered in the myocardium.Western blot assays demonstrated reduced levels of ALDH2 and PKCε,but increased levels of 4-hydroxy-2-nonenal(4 HNE) adducts.Caspase-3 expression did not obviously alter,but active forms of caspase-3 were increased in the hippocampus and prefrontal cortex.In the myocardium,expression of ALDH2,PKCε and 4 HNE adducts did not remarkably alter;while caspase-3 expression was reduced and the active forms of caspase-3 were upregulated.Pearson's correlation test demonstrated that expression of 4 HNE adducts was positively correlated with levels of the active forms of caspase-3 in the hippocampus and prefrontal cortex,but not in the myocardium.In conclusion,chronic stress can damage the PKCε-ALDH2 signaling pathway in the hippocampus and prefrontal cortex,but not in the myocardium.Moreover,4 HNE is associated with active forms of caspase-3 in the hippocampus and prefrontal cortex.展开更多
4-Hydroxyphenylpyruvic acid (4-HPPA), a kind of α-keto acid, is an intermediate in the metabolism of tyrosine and has a wide range of application in food, pharmaceutical and chemical industry. Using amino acids as ...4-Hydroxyphenylpyruvic acid (4-HPPA), a kind of α-keto acid, is an intermediate in the metabolism of tyrosine and has a wide range of application in food, pharmaceutical and chemical industry. Using amino acids as raw material to prod uce the corresponding α-keto acid is thought to be both economic and efficient. Among the enzymes that convert amino acid to α-keto acid, membrane bound L-amino acid deaminase (mL-AAD), which is anchored to the outer side of the cytomembrane, becomes an ideal enzyme to prepare α-keto acid since there is no cofactors needed and H2O2 production during the reaction. In this study, the mL-AAD from Proteus vulgaris was used to prepare whole-cell catalysts to produce 4-HPPA from L-tyrosine. The secretory efficiency of mL-AAD conducted by its own twin-arginine signal peptide (twin-arginine translocation pathway, Tat) and integrated pelB (the general secretory pathway, Sec)-Tat signal peptide was determined and compared firstly, using two pET systems (pET28a and pET20b). It was found that the Tat pathway (pET28a-mlaad) resulted in higher cell-associated mL-AAD activity and cell biomass, and was more beneficial to prepare biocatalyst. In addition, expression hosts BI21 (DE3) and 0.05 mmol. L- 1 IPTG were found to be suitable for mL-AAD expression. The reaction conditions for mL-AAD were optimized and 72.72 mmol,L 1 4-HPPA was obtained from 100 mmol.L 1 tyrosine in 10 h under the optimized conditions. This bioprocess, which is more eco-friendly and economical than the traditional chemical synthesis ways, has great potential for industrial application.展开更多
目的:通过研究银屑病患者皮损处真皮间充质干细胞(DMSCs)中磷脂酶C-β4(PLCB4)和视黄醇脱氢酶(RDH)10mRNA的表达水平,进一步探讨银屑病发病的细胞及分子机制。方法:对24例寻常性银屑病(PV)患者和22例正常人皮肤DMSCs进行分离培养,流式...目的:通过研究银屑病患者皮损处真皮间充质干细胞(DMSCs)中磷脂酶C-β4(PLCB4)和视黄醇脱氢酶(RDH)10mRNA的表达水平,进一步探讨银屑病发病的细胞及分子机制。方法:对24例寻常性银屑病(PV)患者和22例正常人皮肤DMSCs进行分离培养,流式细胞术进行细胞表型鉴定,实时荧光定量聚合酶链式反应(PCR)测定PLCB4和RDH10 mRNA表达水平。结果:PV组与正常对照组DMSCs形态无差异。PV组患者DMSCs中PLCB4 m RNA的表达水平是正常对照组的3.35倍,RDH10 mRNA的表达水平是正常对照组的1.17倍。结论:银屑病患者DMSCs中PLCB4和RDH10 m RNA表达均增高,可能影响相关信号通路,进而对银屑病发病产生影响。展开更多
文摘Background:The dysregulation of Isocitrate dehydrogenase(IDH)and the subsequent production of 2-Hydroxyglutrate(2HG)may alter the expression of epigenetic proteins in Grade 4 astrocytoma.The interplay mechanism between IDH,O-6-methylguanine-DNA methyltransferase(MGMT)-promoter methylation,and protein methyltransferase proteins-5(PRMT5)activity,with tumor progression has never been described.Methods:A retrospective cohort of 34 patients with G4 astrocytoma is classified into IDH-mutant and IDH-wildtype tumors.Both groups were tested for MGMT-promoter methylation and PRMT5 through methylation-specific and gene expression PCR analysis.Inter-cohort statistical significance was evaluated.Results:Both IDH-mutant WHO grade 4 astrocytomas(n=22,64.7%)and IDH-wildtype glioblastomas(n=12,35.3%)had upregulated PRMT5 gene expression except in one case.Out of the 22 IDH-mutant tumors,10(45.5%)tumors showed MGMT-promoter methylation and 12(54.5%)tumors had unmethylated MGMT.All IDH-wildtype tumors had unmethylated MGMT.There was a statistically significant relationship between MGMT-promoter methylation and IDH in G4 astrocytoma(p-value=0.006).Statistically significant differences in progression-free survival(PFS)were also observed among all G4 astrocytomas that expressed PRMT5 and received either temozolomide(TMZ)or TMZ plus other chemotherapies,regardless of their IDH or MGMT-methylation status(p-value=0.0014).Specifically,IDH-mutant tumors that had upregulated PRMT5 activity and MGMT-promoter methylation,who received only TMZ,have exhibited longer PFS.Conclusions:The relationship between PRMT5,MGMT-promoter,and IDH is not tridirectional.However,accumulation of D2-hydroxyglutarate(2-HG),which partially activates 2-OG-dependent deoxygenase,may not affect their activities.In IDH-wildtype glioblastomas,the 2HG-2OG pathway is typically inactive,leading to PRMT5 upregulation.TMZ alone,compared to TMZ-plus,can increase PFS in upregulated PRMT5 tumors.Thus,using a PRMT5 inhibitor in G4 astrocytomas may help in tumor regression.
文摘Degradation of oxidized or oxidatively modified proteins is an essential part of the cellular antioxidant defense system. 4-Hydroxy-2-nonenal (HNE), a major reactive aldehyde formed by lipid peroxidation, causes many types of cellular damage. HNE-modified proteins are degraded by the ubiquitin-proteasome pathway or the lysosomal pathway. However, our previous studies using U937 cells showed that HNE-modified glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is degraded by cathepsin G. In the present study, we examined whether GAPDH in U937 cells treated with HNE in culture is degraded similarly to that incubated with HNE and U937 cell extract. Treatment with HNE for 10 min in culture decreased GAPDH activity in a concentration dependent manner, but did not affect GAPDH degradation. The proteasome activities were not affected by HNE, but culturing with HNE decreased cathepsin G activity and protein level in a concentration dependent manner. These results suggest that HNE-induced oxidative stress leads to decreased cathepsin G activity and results in the loss of GAPDH degradation. Taken together, our findings indicate that cathepsin G has an important role in the degradation of oxidatively modified GAPDH in U937 cells.
基金supported by Instituto de Salud Carlos Ⅲ through FIS project PI 15/00110 co-funded by FEDER from Regional Development European Funds (European Union)the FOIE GRAS project,which has received funding from the European Union’s Horizon 2020 Research and Innovation programme under the Marie Sklodowska-Curie Grant (Agreement No. 722619)
文摘Aldehyde dehydrogenase 2(ALDH2) is best known for its critical detoxifying role in liver alcohol metabolism. However, ALDH2 dysfunction is also involved in a wide range of human pathophysiological situations and is associated with complications such as cardiovascular diseases, diabetes mellitus, neurodegenerative diseases and aging. A growing body of research has shown that ALDH2 provides important protection against oxidative stress and the subsequent loading of toxic aldehydes such as 4-hydroxy-2-nonenal and adducts that occur in human diseases, including ischemia reperfusion injury(IRI). There is increasing evidence of its role in IRI pathophysiology in organs such as heart, brain, small intestine and kidney; however, surprisingly few studies have been carried out in the liver, where ALDH2 is found in abundance. This study reviews the role of ALDH2 in modulating the pathways involved in the pathophysiology of IRI associated with oxidative stress, autophagy and apoptosis. Special emphasis is placed on the role of ALDH2 in different organs, on therapeutic "preconditioning" strategies, and on the use of ALDH2 agonists such as Alda-1, which may become a useful therapeutic tool for preventing the deleterious effects of IRI in organ transplantation.
基金supported by the Medical Research Fund of Guangdong Province of China,No.B2014449a grant from the Science and Technology Project of Zhongshan City of China,No.2014A1FC137
文摘Chronic stress is strongly associated with the occurrence and development of depression and cardiovascular disease.Stress can induce altered mitochondrial function and activation of apoptosis in the cardio-cerebral system.However,it is unknown whether the protein kinase C ε(PKCε)-aldehyde dehydrogenase 2(ALDH2) pathway is altered under chronic stress,and this study sought to address this question.A rat model of depression was established using a chronic unpredictable mild stress(CUMS) protocol.After experiencing CUMS for 4 weeks,the sucrose preference test and the forced swim test verified depressive-like behaviors.Enzyme linked immunosorbent assays showed that ALDH2 activity was decreased in the rat hippocampus and prefrontal cortex,but was not altered in the myocardium.Western blot assays demonstrated reduced levels of ALDH2 and PKCε,but increased levels of 4-hydroxy-2-nonenal(4 HNE) adducts.Caspase-3 expression did not obviously alter,but active forms of caspase-3 were increased in the hippocampus and prefrontal cortex.In the myocardium,expression of ALDH2,PKCε and 4 HNE adducts did not remarkably alter;while caspase-3 expression was reduced and the active forms of caspase-3 were upregulated.Pearson's correlation test demonstrated that expression of 4 HNE adducts was positively correlated with levels of the active forms of caspase-3 in the hippocampus and prefrontal cortex,but not in the myocardium.In conclusion,chronic stress can damage the PKCε-ALDH2 signaling pathway in the hippocampus and prefrontal cortex,but not in the myocardium.Moreover,4 HNE is associated with active forms of caspase-3 in the hippocampus and prefrontal cortex.
基金Supported by the National Natural Science Foundation of China(31470793,31670804)China Postdoctoral Science Foundation(2016M592003)+1 种基金the Natural Science Foundation of Zhejiang Province(LZ13B060002)the General Scientific Research Project of Zhejiang Provincial Education Department(Y201432760)
文摘4-Hydroxyphenylpyruvic acid (4-HPPA), a kind of α-keto acid, is an intermediate in the metabolism of tyrosine and has a wide range of application in food, pharmaceutical and chemical industry. Using amino acids as raw material to prod uce the corresponding α-keto acid is thought to be both economic and efficient. Among the enzymes that convert amino acid to α-keto acid, membrane bound L-amino acid deaminase (mL-AAD), which is anchored to the outer side of the cytomembrane, becomes an ideal enzyme to prepare α-keto acid since there is no cofactors needed and H2O2 production during the reaction. In this study, the mL-AAD from Proteus vulgaris was used to prepare whole-cell catalysts to produce 4-HPPA from L-tyrosine. The secretory efficiency of mL-AAD conducted by its own twin-arginine signal peptide (twin-arginine translocation pathway, Tat) and integrated pelB (the general secretory pathway, Sec)-Tat signal peptide was determined and compared firstly, using two pET systems (pET28a and pET20b). It was found that the Tat pathway (pET28a-mlaad) resulted in higher cell-associated mL-AAD activity and cell biomass, and was more beneficial to prepare biocatalyst. In addition, expression hosts BI21 (DE3) and 0.05 mmol. L- 1 IPTG were found to be suitable for mL-AAD expression. The reaction conditions for mL-AAD were optimized and 72.72 mmol,L 1 4-HPPA was obtained from 100 mmol.L 1 tyrosine in 10 h under the optimized conditions. This bioprocess, which is more eco-friendly and economical than the traditional chemical synthesis ways, has great potential for industrial application.
文摘目的:通过研究银屑病患者皮损处真皮间充质干细胞(DMSCs)中磷脂酶C-β4(PLCB4)和视黄醇脱氢酶(RDH)10mRNA的表达水平,进一步探讨银屑病发病的细胞及分子机制。方法:对24例寻常性银屑病(PV)患者和22例正常人皮肤DMSCs进行分离培养,流式细胞术进行细胞表型鉴定,实时荧光定量聚合酶链式反应(PCR)测定PLCB4和RDH10 mRNA表达水平。结果:PV组与正常对照组DMSCs形态无差异。PV组患者DMSCs中PLCB4 m RNA的表达水平是正常对照组的3.35倍,RDH10 mRNA的表达水平是正常对照组的1.17倍。结论:银屑病患者DMSCs中PLCB4和RDH10 m RNA表达均增高,可能影响相关信号通路,进而对银屑病发病产生影响。
基金National Natural Science Foundation of China(30640048)the Science Foundation of the Key Laboratory of Biotic Environment andEcological Safetyin Anhui Province, China