The non-isothermal degradation kinetics of N,N'-di(diethoxythiophosphoryl)-1,4-phenylenediamine in N2 was studied by TG-DTG techniques.The kinetic parameters,including the activation energy and pre-exponential fact...The non-isothermal degradation kinetics of N,N'-di(diethoxythiophosphoryl)-1,4-phenylenediamine in N2 was studied by TG-DTG techniques.The kinetic parameters,including the activation energy and pre-exponential factor of the degradation process for the title compound were calculated by means of the Kissinger and Flynn-Wall-Ozawa(FWO)method and the thermal degradation mechanism of the title compound was also studied with the Satava-Sestak methods.The results indicate that the activation energy and pre-exponential factor are 152.61 kJ/mol and 9.06×101 4s -1with the Kissinger method and 154.08 kJ/mol with the Flynn-Wall-Ozawa method,respectively.It has been shown that the degradation of the title compound follows a kinetic model of one-dimensional diffusion or parabolic law,the kinetic function is G(α)=α2and the reaction order is n=2.展开更多
A new amphoteric membrane was prepared by blending long-side-chain sulfonated poly(2,6-dimethyl-1,4-phenylene oxide)(S-L-PPO)and polybenzimidazole(PBI)for vanadium redox flow battery(VRFB)application.An acid-base pair...A new amphoteric membrane was prepared by blending long-side-chain sulfonated poly(2,6-dimethyl-1,4-phenylene oxide)(S-L-PPO)and polybenzimidazole(PBI)for vanadium redox flow battery(VRFB)application.An acid-base pair structure formed between the imidazole of PBI and sulfonic acid of S-L-PPO resulted in lowered swelling ratio.It favors to reduce the vanadium permeation.While,the increased sulfonic acid concentration ensured that proton conductivity was still at a high level.As a result,a better balance between the vanadium ion permeation(6.1×10^-9 cm^2·s^-1)and proton conductivity(50.8 m S·cm^-1)in the S-L-PPO/PBI-10%membrane was achieved.The VRFB performance with S-L-PPO/PBI-10%membrane exhibited an EE of 82.7%,which was higher than those of pristine S-L-PPO(81.8%)and Nafion 212(78.0%)at 120 m A·cm^-2.In addition,the S-LPPO/PBI-10%membrane had a much longer self-discharge duration time(142 h)than that of Nafion 212(23 h).展开更多
Chiral organic-inorganic hybrid silicas can be prepared via the self-assemblies of chiral surfactants and gelators as templates.However,the relationship between the chirality of the hybrid silica and the structure of ...Chiral organic-inorganic hybrid silicas can be prepared via the self-assemblies of chiral surfactants and gelators as templates.However,the relationship between the chirality of the hybrid silica and the structure of the surfactant/gelator has not been systemically studied.Herein,a series of chiral low-molecular-weight amphiphiles(LMWAs) derived from L-valine was synthesized.Their alkyl chains were n-butadecyl,n-hexadecyl and n-octadecyl,respectively.They can form viscous liquids in pure water,and physical gels in tetrahydrofuran,cyclohexanone,acetonitrile,acetone,chlorobenzene and nitrobenzene.Chiral 1,4-phenylene-silicas were prepared via the self-assemblies of these LMWAs as templates.With increasing the alkyl chain length,the 1,4-phenylene-silicas changed from short mesoporous nanorods to long nanotubes.The circular dichroism spectra of the 1,4-phenylene-silicas indicated that the long nanotubes exhibit the strongest chirality.展开更多
Experiments including C-13 spin-lattice relaxation, C-13 heteronuclear dipolar dephasing and H-1 spin diffusion are performed on poly (2,6-dimethyl-1,4-phenylene oxide) (PPO). The results show that the rotation of the...Experiments including C-13 spin-lattice relaxation, C-13 heteronuclear dipolar dephasing and H-1 spin diffusion are performed on poly (2,6-dimethyl-1,4-phenylene oxide) (PPO). The results show that the rotation of the methyl groups in solid PPO is partially restricted, which results in a surprisingly efficient spin diffusion between the aromatic proton and methyl proton characterized by a diffusion time of 150 mu s. The results also show that the aromatic ring in solid PPO is rigid and twisted, which causes all aromatic carbons to be chemically unequivalent.展开更多
Reaction of 4,4’-(1,4-phenylene)bis(5-acetyl-6-methyl-2-thioxo-1,2-dihydropyridine-3-carbonitrile) (1) with methyl iodide afforded the 4,4’-(1,4-phenylene)bis(5-acetyl-6-methyl-2-(methylthio)nicotinonitrile) (2). Th...Reaction of 4,4’-(1,4-phenylene)bis(5-acetyl-6-methyl-2-thioxo-1,2-dihydropyridine-3-carbonitrile) (1) with methyl iodide afforded the 4,4’-(1,4-phenylene)bis(5-acetyl-6-methyl-2-(methylthio)nicotinonitrile) (2). The reaction of 2 with hydrazine hydrate followed by diazotization reaction af-forded the 1,1’-(1,4-phenylenebis(3-amino-6-methyl-1H-pyrazolo[3,4-b]pyridine-4,5-diyl))bis(e-than-1-one) (3) and 1,1’-(1,4-phenylenebis(3-(chlorodiazenyl)-6-methyl-1H-pyrazolo[3,4-b]-pyridine-4,5-diyl))bis(ethan-1-one) (4) respectively. On the other hand, reaction of 4 with malononitrile, 2-cyanoethanethioamide, ethyl acetoacetate, acetyl acetone, ethyl benzoylacetate, diethylmalonate, ethyl cyanoacetate and phenacylbromide aiming to build up pyrazolotriazine or pyrazole ring on the ring system of 4. Structures of all newly synthesized heterocyclic compounds in the present study were confirmed by considering the data of IR, 1H NMR, mass spectra as well as that of elemental analyses.展开更多
Ion exchange membranes(IEMs) play a significant role in fields of energy and environment, for instance fuel cells, diffusion dialysis, electrodialysis, etc. The limited choice of commercially available IEMs has produc...Ion exchange membranes(IEMs) play a significant role in fields of energy and environment, for instance fuel cells, diffusion dialysis, electrodialysis, etc. The limited choice of commercially available IEMs has produced a strong demand of fabricating IEMs with improved properties via facile synthetic strategies over the past two decades. Poly(phenylene oxide)(PPO) is considered as a promising polymeric material for constructing practical IEMs, due to its advantages of good physicochemical properties, low manufacturing cost and easy post functionalization. In this review, we present the accumulated efforts in synthetic strategies towards diverse types of PPO-based IEMs. Relation between polymer structures and the resulted features is discussed in detail. Besides, applying IEMs from PPO and its derivatives in fuel cell, diffusion dialysis and electrodialysis is summarized and commented.展开更多
基金the China Petroleum&Chemical Science and Technology Foundation(No.205026)the Tianjin Science andTechnology Plan Foundation,China(No.06TXTJJC14400).
文摘The non-isothermal degradation kinetics of N,N'-di(diethoxythiophosphoryl)-1,4-phenylenediamine in N2 was studied by TG-DTG techniques.The kinetic parameters,including the activation energy and pre-exponential factor of the degradation process for the title compound were calculated by means of the Kissinger and Flynn-Wall-Ozawa(FWO)method and the thermal degradation mechanism of the title compound was also studied with the Satava-Sestak methods.The results indicate that the activation energy and pre-exponential factor are 152.61 kJ/mol and 9.06×101 4s -1with the Kissinger method and 154.08 kJ/mol with the Flynn-Wall-Ozawa method,respectively.It has been shown that the degradation of the title compound follows a kinetic model of one-dimensional diffusion or parabolic law,the kinetic function is G(α)=α2and the reaction order is n=2.
基金supported by the National Natural Science Foundation of China(U1808209)Fundamental Research Funds for the Central Universities(DUT18JC40)Liaoning Province Science and Technology Department(201601037)。
文摘A new amphoteric membrane was prepared by blending long-side-chain sulfonated poly(2,6-dimethyl-1,4-phenylene oxide)(S-L-PPO)and polybenzimidazole(PBI)for vanadium redox flow battery(VRFB)application.An acid-base pair structure formed between the imidazole of PBI and sulfonic acid of S-L-PPO resulted in lowered swelling ratio.It favors to reduce the vanadium permeation.While,the increased sulfonic acid concentration ensured that proton conductivity was still at a high level.As a result,a better balance between the vanadium ion permeation(6.1×10^-9 cm^2·s^-1)and proton conductivity(50.8 m S·cm^-1)in the S-L-PPO/PBI-10%membrane was achieved.The VRFB performance with S-L-PPO/PBI-10%membrane exhibited an EE of 82.7%,which was higher than those of pristine S-L-PPO(81.8%)and Nafion 212(78.0%)at 120 m A·cm^-2.In addition,the S-LPPO/PBI-10%membrane had a much longer self-discharge duration time(142 h)than that of Nafion 212(23 h).
基金Supported by the Program of Innovative Research Team of Soochow Universitythe Priority Academic Program Development(PAPD) of Jiangsu High Education Institutionsthe National Natural Science Foundation of China(Nos.21071103,21074086)
文摘Chiral organic-inorganic hybrid silicas can be prepared via the self-assemblies of chiral surfactants and gelators as templates.However,the relationship between the chirality of the hybrid silica and the structure of the surfactant/gelator has not been systemically studied.Herein,a series of chiral low-molecular-weight amphiphiles(LMWAs) derived from L-valine was synthesized.Their alkyl chains were n-butadecyl,n-hexadecyl and n-octadecyl,respectively.They can form viscous liquids in pure water,and physical gels in tetrahydrofuran,cyclohexanone,acetonitrile,acetone,chlorobenzene and nitrobenzene.Chiral 1,4-phenylene-silicas were prepared via the self-assemblies of these LMWAs as templates.With increasing the alkyl chain length,the 1,4-phenylene-silicas changed from short mesoporous nanorods to long nanotubes.The circular dichroism spectra of the 1,4-phenylene-silicas indicated that the long nanotubes exhibit the strongest chirality.
文摘Experiments including C-13 spin-lattice relaxation, C-13 heteronuclear dipolar dephasing and H-1 spin diffusion are performed on poly (2,6-dimethyl-1,4-phenylene oxide) (PPO). The results show that the rotation of the methyl groups in solid PPO is partially restricted, which results in a surprisingly efficient spin diffusion between the aromatic proton and methyl proton characterized by a diffusion time of 150 mu s. The results also show that the aromatic ring in solid PPO is rigid and twisted, which causes all aromatic carbons to be chemically unequivalent.
文摘Reaction of 4,4’-(1,4-phenylene)bis(5-acetyl-6-methyl-2-thioxo-1,2-dihydropyridine-3-carbonitrile) (1) with methyl iodide afforded the 4,4’-(1,4-phenylene)bis(5-acetyl-6-methyl-2-(methylthio)nicotinonitrile) (2). The reaction of 2 with hydrazine hydrate followed by diazotization reaction af-forded the 1,1’-(1,4-phenylenebis(3-amino-6-methyl-1H-pyrazolo[3,4-b]pyridine-4,5-diyl))bis(e-than-1-one) (3) and 1,1’-(1,4-phenylenebis(3-(chlorodiazenyl)-6-methyl-1H-pyrazolo[3,4-b]-pyridine-4,5-diyl))bis(ethan-1-one) (4) respectively. On the other hand, reaction of 4 with malononitrile, 2-cyanoethanethioamide, ethyl acetoacetate, acetyl acetone, ethyl benzoylacetate, diethylmalonate, ethyl cyanoacetate and phenacylbromide aiming to build up pyrazolotriazine or pyrazole ring on the ring system of 4. Structures of all newly synthesized heterocyclic compounds in the present study were confirmed by considering the data of IR, 1H NMR, mass spectra as well as that of elemental analyses.
基金supported by the National Natural Science Foundation of China (21506201, 21720102003, 91534203)the Key Technologies R&D Program of Anhui Province (17030901079)+1 种基金K. C. Wong Education Foundation (2016-11)International Partnership Program of Chinese Academy of Sciences (21134ky5b20170010)
文摘Ion exchange membranes(IEMs) play a significant role in fields of energy and environment, for instance fuel cells, diffusion dialysis, electrodialysis, etc. The limited choice of commercially available IEMs has produced a strong demand of fabricating IEMs with improved properties via facile synthetic strategies over the past two decades. Poly(phenylene oxide)(PPO) is considered as a promising polymeric material for constructing practical IEMs, due to its advantages of good physicochemical properties, low manufacturing cost and easy post functionalization. In this review, we present the accumulated efforts in synthetic strategies towards diverse types of PPO-based IEMs. Relation between polymer structures and the resulted features is discussed in detail. Besides, applying IEMs from PPO and its derivatives in fuel cell, diffusion dialysis and electrodialysis is summarized and commented.