Na_(3)V_(2)(PO_(4))_(3)(NVP)has garnered great attentions as a prospective cathode material for sodium-ion batteries(SIBs)by virtue of its decent theoretical capacity,superior ion conductivity and high structural stab...Na_(3)V_(2)(PO_(4))_(3)(NVP)has garnered great attentions as a prospective cathode material for sodium-ion batteries(SIBs)by virtue of its decent theoretical capacity,superior ion conductivity and high structural stability.However,the inherently poor electronic conductivity and sluggish sodium-ion diffusion kinetics of NVP material give rise to inferior rate performance and unsatisfactory energy density,which strictly confine its further application in SIBs.Thus,it is of significance to boost the sodium storage performance of NVP cathode material.Up to now,many methods have been developed to optimize the electrochemical performance of NVP cathode material.In this review,the latest advances in optimization strategies for improving the electrochemical performance of NVP cathode material are well summarized and discussed,including carbon coating or modification,foreign-ion doping or substitution and nanostructure and morphology design.The foreign-ion doping or substitution is highlighted,involving Na,V,and PO_(4)^(3−)sites,which include single-site doping,multiple-site doping,single-ion doping,multiple-ion doping and so on.Furthermore,the challenges and prospects of high-performance NVP cathode material are also put forward.It is believed that this review can provide a useful reference for designing and developing high-performance NVP cathode material toward the large-scale application in SIBs.展开更多
Graphitic carbon nitride nanosheets(CNNs)become the most promising member in the carbon nitride family benefitted from their two-dimensional structural features.Recently,great endeavors have been made in the synthesis...Graphitic carbon nitride nanosheets(CNNs)become the most promising member in the carbon nitride family benefitted from their two-dimensional structural features.Recently,great endeavors have been made in the synthesis and modification of CNNs to improve their photocatalytic properties,and many exciting progresses have been gained.In order to elucidate the fundamentals of CNNs based catalysts and provide the insights into rational design of photocatalysis system,we describe recent progress made in CNNs preparation strategies and their applications in this review.Firstly,the physicochemical properties of CNNs are briefly introduced.Secondly,the synthesis approaches of CNNs are reviewed,including top-down stripping strategies(thermal,gas,liquid,and composite stripping)and bottom-up precursor molecules design strategies(solvothermal,template,and supramolecular self-assembly method).Subsequently,the modification strategies based on CNNs in recent years are discussed,including crystal structure design,doping,surface functionalization,constructing 2D heterojunction,and anchoring single-atom.Then the multifunctional applications of g-C_(3)N_(4) nanosheet based materials in photocatalysis including H_(2) evolution,O_(2) evolution,overall water splitting,H_(2)O_(2) production,CO_(2) reduction,N_(2) fixation,pollutant removal,organic synthesis,and sensing are highlighted.Finally,the opportunities and challenges for the development of high-performance CNNs photocatalytic systems are also prospected.展开更多
With the increasing maturity of 5G technology and the comprehensive development of video apps on the Internet,the landscape of video app downloads shows that Migu Video lags behind giants like iQiyi,Tencent Video,Youk...With the increasing maturity of 5G technology and the comprehensive development of video apps on the Internet,the landscape of video app downloads shows that Migu Video lags behind giants like iQiyi,Tencent Video,Youku,and Mango TV.However,during the Tokyo Olympics and the Beijing Winter Olympics,Migu Video’s focus on sports coverage and commentary led to increased public use and app downloads.This study analyzes the marketing status and strategy of the Migu Video App.It conducts a detailed analysis using the 4I theory-interest,interaction,individuality,and initiative-and proposes a brand marketing strategy tailored for Migu Video.This aims to provide insights into the marketing strategies of other mobile Internet companies.展开更多
This article discusses the application of theories in the field of learning strategies to ELT classroom in Chinese universities.By reviewing the literature of learning strategies,this article examines the possible con...This article discusses the application of theories in the field of learning strategies to ELT classroom in Chinese universities.By reviewing the literature of learning strategies,this article examines the possible connection between theories and the Chinese ELT classroom in specific,in which it focuses on the requirements of CET 4 examination.By doing so,this article tries to offer some suggestions that could be used in the classroom.展开更多
Photocatalysis driven by abundant yet intermittent solar energy has considerable potential in renewable energy generation and environmental remediation.The outstanding electronic structure and physicochemical properti...Photocatalysis driven by abundant yet intermittent solar energy has considerable potential in renewable energy generation and environmental remediation.The outstanding electronic structure and physicochemical properties of graphitic carbon nitride(g-C_(3)N_(4)),together with unique metal-free characteristic,make them ideal candidates for advanced photocatalysts construction.This review summarizes the up-to-date advances on g-C_(3)N_(4)based photocatalysts from ingenious-design strategies and diversified photocatalytic applications.Notably,the advantages,fabrication methods and limitations of each design strategy are systemically analyzed.In order to deeply comprehend the inner connection of theory–structure–performance upon g-C_(3)N_(4)based photocatalysts,structure/composition designs,corresponding photocatalytic activities and reaction mechanisms are jointly discussed,associated with introducing their photocatalytic applications toward water splitting,carbon dioxide/nitrogen reduction and pollutants degradation,etc.Finally,the current challenges and future perspectives for g-C_(3)N_(4)based materials for photocatalysis are briefly proposed.These design strategies and limitations are also instructive for constructing g-C_(3)N_(4) based materials in other energy and environment-related applications.展开更多
Recent advances in stem cell technologies have opened new avenues for the treatment of a number of diseases still lacking effective therapeutic options.Cell transplantation has emerged as among the most promising clin...Recent advances in stem cell technologies have opened new avenues for the treatment of a number of diseases still lacking effective therapeutic options.Cell transplantation has emerged as among the most promising clinical intervention for disorders such as injuries,diabetes,liver diseases, neurodegeneration and heart failure (Lee et al., 2013; Forbes and Rosenthal, 2014; Tabar and Studer, 2014).展开更多
From the perspective of marketing theory and the premise of SWOT theory analysis,this paper puts forward the basic strategies of developing continuing education based on 4Ps theory in universities.Combined with the ed...From the perspective of marketing theory and the premise of SWOT theory analysis,this paper puts forward the basic strategies of developing continuing education based on 4Ps theory in universities.Combined with the educational products in the field of management and public administration in the market economy,this paper analyzes the strengths,weaknesses,opportunities and threats in the development of continuing education in universities.From the four aspects of product,price,place and promotion,we summarize the concrete measure which may provide the reference to develop continuing education.展开更多
Thermal insulation materials play an increasingly important role in protecting mechanical parts functioning at high temperatures.In this study,a new porous high-entropy(La_(1/6)Ce_(1/6)Pr_(1/6)Sm_(1/6)Eu_(1/6)Gd_(1/6)...Thermal insulation materials play an increasingly important role in protecting mechanical parts functioning at high temperatures.In this study,a new porous high-entropy(La_(1/6)Ce_(1/6)Pr_(1/6)Sm_(1/6)Eu_(1/6)Gd_(1/6))PO_(4)(HE(6RE_(1/6))PO_(4))ceramics was prepared by combining the high-entropy method with the pore-forming agent method and the effect of different starch contents(0–60vol%)on this ceramic properties was systematically investigated.The results show that the porous HE(6RE_(1/6))PO_(4)ceramics with 60vol%starch exhibit the lowest thermal conductivity of 0.061 W·m^(-1)·K^(-1)at room temperature and good pore structure stability with a linear shrinkage of approximately1.67%.Moreover,the effect of large regular spherical pores(>10μm)on its thermal insulation performance was discussed,and an optimal thermal conductivity prediction model was screened.The superior properties of the prepared porous HE(6RE_(1/6))PO_(4)ceramics allow them to be promising insulation materials in the future.展开更多
This paper aims to explore how a veteran teacher organizes online teaching initiated by the pandemic and how she deals with the problems in online teacher-student verbal interaction.By analyzing a corpus of 20 audio-r...This paper aims to explore how a veteran teacher organizes online teaching initiated by the pandemic and how she deals with the problems in online teacher-student verbal interaction.By analyzing a corpus of 20 audio-recorded online lessons between a math teacher and her students during the COVID-19 pandemic from April 11 to May 10,2022,four interactional segments are selected as the focus of the study.The results of the conversation analysis of the segments showed that students’modesty,lack of confidence,lack of ability,and network delay are the main factors affecting online teacher-student interaction.By encouraging students to answer questions,enlightening students to give answers,enriching students’answers,and entertaining the teaching atmosphere(“4Es”strategies),the teacher solved the problems successfully.The findings from this study can provide pedagogical experience and implications for practical teaching.展开更多
基金partly supported by the National Natural Science Foundation of China(Grant No.52272225).
文摘Na_(3)V_(2)(PO_(4))_(3)(NVP)has garnered great attentions as a prospective cathode material for sodium-ion batteries(SIBs)by virtue of its decent theoretical capacity,superior ion conductivity and high structural stability.However,the inherently poor electronic conductivity and sluggish sodium-ion diffusion kinetics of NVP material give rise to inferior rate performance and unsatisfactory energy density,which strictly confine its further application in SIBs.Thus,it is of significance to boost the sodium storage performance of NVP cathode material.Up to now,many methods have been developed to optimize the electrochemical performance of NVP cathode material.In this review,the latest advances in optimization strategies for improving the electrochemical performance of NVP cathode material are well summarized and discussed,including carbon coating or modification,foreign-ion doping or substitution and nanostructure and morphology design.The foreign-ion doping or substitution is highlighted,involving Na,V,and PO_(4)^(3−)sites,which include single-site doping,multiple-site doping,single-ion doping,multiple-ion doping and so on.Furthermore,the challenges and prospects of high-performance NVP cathode material are also put forward.It is believed that this review can provide a useful reference for designing and developing high-performance NVP cathode material toward the large-scale application in SIBs.
基金supported by the National Natural Science Foundation of China(22172195)Central South University Graduate Students Independent Exploration and Innovation Project(2023ZZTS0736 and 2023ZZTS0760).
文摘Graphitic carbon nitride nanosheets(CNNs)become the most promising member in the carbon nitride family benefitted from their two-dimensional structural features.Recently,great endeavors have been made in the synthesis and modification of CNNs to improve their photocatalytic properties,and many exciting progresses have been gained.In order to elucidate the fundamentals of CNNs based catalysts and provide the insights into rational design of photocatalysis system,we describe recent progress made in CNNs preparation strategies and their applications in this review.Firstly,the physicochemical properties of CNNs are briefly introduced.Secondly,the synthesis approaches of CNNs are reviewed,including top-down stripping strategies(thermal,gas,liquid,and composite stripping)and bottom-up precursor molecules design strategies(solvothermal,template,and supramolecular self-assembly method).Subsequently,the modification strategies based on CNNs in recent years are discussed,including crystal structure design,doping,surface functionalization,constructing 2D heterojunction,and anchoring single-atom.Then the multifunctional applications of g-C_(3)N_(4) nanosheet based materials in photocatalysis including H_(2) evolution,O_(2) evolution,overall water splitting,H_(2)O_(2) production,CO_(2) reduction,N_(2) fixation,pollutant removal,organic synthesis,and sensing are highlighted.Finally,the opportunities and challenges for the development of high-performance CNNs photocatalytic systems are also prospected.
基金Suihua University 2022 Project“Exploration and Practice of the Connotation Construction of Agricultural Product Circulation Discipline Professional Cluster”(Project No.2022007)。
文摘With the increasing maturity of 5G technology and the comprehensive development of video apps on the Internet,the landscape of video app downloads shows that Migu Video lags behind giants like iQiyi,Tencent Video,Youku,and Mango TV.However,during the Tokyo Olympics and the Beijing Winter Olympics,Migu Video’s focus on sports coverage and commentary led to increased public use and app downloads.This study analyzes the marketing status and strategy of the Migu Video App.It conducts a detailed analysis using the 4I theory-interest,interaction,individuality,and initiative-and proposes a brand marketing strategy tailored for Migu Video.This aims to provide insights into the marketing strategies of other mobile Internet companies.
文摘This article discusses the application of theories in the field of learning strategies to ELT classroom in Chinese universities.By reviewing the literature of learning strategies,this article examines the possible connection between theories and the Chinese ELT classroom in specific,in which it focuses on the requirements of CET 4 examination.By doing so,this article tries to offer some suggestions that could be used in the classroom.
基金supported by the National Natural Science Foundation of China(21875118,22111530112)the support from the Smart Sensing Interdisciplinary Science Center,Nankai University。
文摘Photocatalysis driven by abundant yet intermittent solar energy has considerable potential in renewable energy generation and environmental remediation.The outstanding electronic structure and physicochemical properties of graphitic carbon nitride(g-C_(3)N_(4)),together with unique metal-free characteristic,make them ideal candidates for advanced photocatalysts construction.This review summarizes the up-to-date advances on g-C_(3)N_(4)based photocatalysts from ingenious-design strategies and diversified photocatalytic applications.Notably,the advantages,fabrication methods and limitations of each design strategy are systemically analyzed.In order to deeply comprehend the inner connection of theory–structure–performance upon g-C_(3)N_(4)based photocatalysts,structure/composition designs,corresponding photocatalytic activities and reaction mechanisms are jointly discussed,associated with introducing their photocatalytic applications toward water splitting,carbon dioxide/nitrogen reduction and pollutants degradation,etc.Finally,the current challenges and future perspectives for g-C_(3)N_(4)based materials for photocatalysis are briefly proposed.These design strategies and limitations are also instructive for constructing g-C_(3)N_(4) based materials in other energy and environment-related applications.
基金supported by Fondation pour la Recherche Médicale(Equipe FRM),SATT Sud Est-Accelerator of Technology Transfer,Association France Parkinson,Fondation de France(Committee Parkinson),COST Action CM1106
文摘Recent advances in stem cell technologies have opened new avenues for the treatment of a number of diseases still lacking effective therapeutic options.Cell transplantation has emerged as among the most promising clinical intervention for disorders such as injuries,diabetes,liver diseases, neurodegeneration and heart failure (Lee et al., 2013; Forbes and Rosenthal, 2014; Tabar and Studer, 2014).
文摘From the perspective of marketing theory and the premise of SWOT theory analysis,this paper puts forward the basic strategies of developing continuing education based on 4Ps theory in universities.Combined with the educational products in the field of management and public administration in the market economy,this paper analyzes the strengths,weaknesses,opportunities and threats in the development of continuing education in universities.From the four aspects of product,price,place and promotion,we summarize the concrete measure which may provide the reference to develop continuing education.
基金the National Key R&D Program of China(No.2021YFB3701404)the National Natural Science Fund for Distinguished Young Scholars(No.52025041)+1 种基金the National Natural Science Foundation of China(Nos.52250091,51904021,and 52174294)the Fundamental Research Funds for the Central Universities(Nos.FRF-TP-20-02C2 and FRF-BD-22-05).
文摘Thermal insulation materials play an increasingly important role in protecting mechanical parts functioning at high temperatures.In this study,a new porous high-entropy(La_(1/6)Ce_(1/6)Pr_(1/6)Sm_(1/6)Eu_(1/6)Gd_(1/6))PO_(4)(HE(6RE_(1/6))PO_(4))ceramics was prepared by combining the high-entropy method with the pore-forming agent method and the effect of different starch contents(0–60vol%)on this ceramic properties was systematically investigated.The results show that the porous HE(6RE_(1/6))PO_(4)ceramics with 60vol%starch exhibit the lowest thermal conductivity of 0.061 W·m^(-1)·K^(-1)at room temperature and good pore structure stability with a linear shrinkage of approximately1.67%.Moreover,the effect of large regular spherical pores(>10μm)on its thermal insulation performance was discussed,and an optimal thermal conductivity prediction model was screened.The superior properties of the prepared porous HE(6RE_(1/6))PO_(4)ceramics allow them to be promising insulation materials in the future.
文摘This paper aims to explore how a veteran teacher organizes online teaching initiated by the pandemic and how she deals with the problems in online teacher-student verbal interaction.By analyzing a corpus of 20 audio-recorded online lessons between a math teacher and her students during the COVID-19 pandemic from April 11 to May 10,2022,four interactional segments are selected as the focus of the study.The results of the conversation analysis of the segments showed that students’modesty,lack of confidence,lack of ability,and network delay are the main factors affecting online teacher-student interaction.By encouraging students to answer questions,enlightening students to give answers,enriching students’answers,and entertaining the teaching atmosphere(“4Es”strategies),the teacher solved the problems successfully.The findings from this study can provide pedagogical experience and implications for practical teaching.