Let L be a linear operator in L 2 (? n ) and generate an analytic semigroup {e ?tL }t?0 with kernel satisfying an upper bound of Poisson type, whose decay is measured by θ(L) ∈ (0, ∞). Let ω on (0,∞) be of upper ...Let L be a linear operator in L 2 (? n ) and generate an analytic semigroup {e ?tL }t?0 with kernel satisfying an upper bound of Poisson type, whose decay is measured by θ(L) ∈ (0, ∞). Let ω on (0,∞) be of upper type 1 and of critical lower type p o (ω) ? (n/(n+θ(L)),1] and ρ(t) = t t1/ω ?1(t ?1) for t ∈ (0,∞). We introduce the Orlicz-Hardy space H ω, L (? n ) and the BMO-type space BMO ρ, L (? n ) and establish the John-Nirenberg inequality for BMO ρ, L (? n ) functions and the duality relation between H ω, L ((? n ) and BMO ρ, L* (? n ), where L* denotes the adjoint operator of L in L 2 (? n ). Using this duality relation, we further obtain the ρ-Carleson measure characterization of BMO ρ, L* (? n ) and the molecular characterization of H ω, L (? n ); the latter is used to establish the boundedness of the generalized fractional operator L ρ ?γ from H ω, L (? n ) to H L 1 (? n ) or L q (? n ) with certain q > 1, where H L (? n ) is the Hardy space introduced by Auscher, Duong and McIntosh. These results generalize the existing results by taking ω(t) = t p for t ∈ (0,∞) and p ∈ (n/(n + θ(L)), 1].展开更多
Hrmander condition for boundedness of multiplier operators will be replaced by a weaker condition described by certain weighted or non-weighted Herz spaces. Some results on boundedness of multiplier operators are then...Hrmander condition for boundedness of multiplier operators will be replaced by a weaker condition described by certain weighted or non-weighted Herz spaces. Some results on boundedness of multiplier operators are then established. As direct corollaries of main theorems in this paper, several celebrated results on boundedness of multiplier operators will be improved or deduced.展开更多
基金supported by National Science Foundation for Distinguished Young Scholars of China (GrantNo. 10425106)
文摘Let L be a linear operator in L 2 (? n ) and generate an analytic semigroup {e ?tL }t?0 with kernel satisfying an upper bound of Poisson type, whose decay is measured by θ(L) ∈ (0, ∞). Let ω on (0,∞) be of upper type 1 and of critical lower type p o (ω) ? (n/(n+θ(L)),1] and ρ(t) = t t1/ω ?1(t ?1) for t ∈ (0,∞). We introduce the Orlicz-Hardy space H ω, L (? n ) and the BMO-type space BMO ρ, L (? n ) and establish the John-Nirenberg inequality for BMO ρ, L (? n ) functions and the duality relation between H ω, L ((? n ) and BMO ρ, L* (? n ), where L* denotes the adjoint operator of L in L 2 (? n ). Using this duality relation, we further obtain the ρ-Carleson measure characterization of BMO ρ, L* (? n ) and the molecular characterization of H ω, L (? n ); the latter is used to establish the boundedness of the generalized fractional operator L ρ ?γ from H ω, L (? n ) to H L 1 (? n ) or L q (? n ) with certain q > 1, where H L (? n ) is the Hardy space introduced by Auscher, Duong and McIntosh. These results generalize the existing results by taking ω(t) = t p for t ∈ (0,∞) and p ∈ (n/(n + θ(L)), 1].
基金supported by the National Basic Research Program of China (Grant No. 1999075105)the National Natural Science Foundation of China (Grant No. 10471002)Research Foundation for Doctoral Programm (Grant No. 20050574002)
文摘The Paley-Wiener theorem in the non-commutative and non-associative octonion analytic function space is proved.
基金the National Natural Science Foundation of China (Grant No. 10571014)
文摘Hrmander condition for boundedness of multiplier operators will be replaced by a weaker condition described by certain weighted or non-weighted Herz spaces. Some results on boundedness of multiplier operators are then established. As direct corollaries of main theorems in this paper, several celebrated results on boundedness of multiplier operators will be improved or deduced.