A bimodal mesoporous silica(BMMS) modified with amphiphilic compound(C_(19)H_(42)N)_3(PMo_(12)O_(40))(CTA-PMO) was prepared by the two-step impregnation method. Firstly, H3PMo12O40 was introduced into the bimodal meso...A bimodal mesoporous silica(BMMS) modified with amphiphilic compound(C_(19)H_(42)N)_3(PMo_(12)O_(40))(CTA-PMO) was prepared by the two-step impregnation method. Firstly, H3PMo12O40 was introduced into the bimodal mesoporous silica via impregnation, then C_(19)H_(42)NBr(CTAB) was grafted on the surface of BMMS containing H3PMo12O40 based on the chemical reaction between quaternary ammonium compound and the phosphomolybdic acid, and then the catalyst CTAPMO/BMMS was obtained. The samples were characterized by XRD, N_2 adsorption and desorption, FTIR, 31P-NMR, 29Si-NMR and TEM analyses. It is shown that the catalyst has a typical bimodal mesoporous structure, in which the small mesopore diameter is about 3.0 nm and the large mesopore diameter is about 5.0 nm. The chemical interaction happens between the Keggin structure and silica group of BMMS. Compared with the mono-modal porous Hβ and SBA-15 zeolites modified with CTA-PMO, CTA-PMO/BMMS showed better catalytic activity in the oxidative conversion of dibenzothiophene(DBT), and the desulfurization rate can reach about 94% with the help of extraction, and the catalyst can be separated by filtration and reused directly. The catalytic oxidative desulfurization mechanism on CTA-PMO/BMMS was proposed and verified.展开更多
Biorthogonal multiple wavelets are generated from refinable function vectors by using the multiresolution analysis. In this paper we provide a general method for the construction of compactly supported biorthogonal mu...Biorthogonal multiple wavelets are generated from refinable function vectors by using the multiresolution analysis. In this paper we provide a general method for the construction of compactly supported biorthogonal multiple wavelets by refinable function vectors which are the solutions of vector refinement equations of the form $$\varphi (x) = \sum\limits_{\alpha \in \mathbb{Z}^s } {a(\alpha )\varphi (Mx - \alpha ), x \in \mathbb{R}^s } ,$$ where the vector of functions ? = (? 1, …, ? r)T is in $(L_2 (\mathbb{R}^s ))^r ,a = :(a(\alpha ))_{\alpha \in \mathbb{Z}^s } $ is a finitely supported sequence of r × r matrices called the refinement mask, and M is an s × s integer matrix such that lim n→∞ M ?n = 0. Our characterizations are in the general setting and the main results of this paper are the real extensions of some known results.展开更多
Due to its good potential for digital signal processing, discrete Gabor analysis has interested some mathematicians. This paper addresses Gabor systems on discrete periodic sets, which can model signals to appear peri...Due to its good potential for digital signal processing, discrete Gabor analysis has interested some mathematicians. This paper addresses Gabor systems on discrete periodic sets, which can model signals to appear periodically but intermittently. Complete Gabor systems and Gabor frames on discrete periodic sets are characterized; a sufficient and necessary condition on what periodic sets admit complete Gabor systems is obtained; this condition is also proved to be sufficient and necessary for the existence of sets E such that the Gabor systems generated by χE are tight frames on these periodic sets; our proof is constructive, and all tight frames of the above form with a special frame bound can be obtained by our method; periodic sets admitting Gabor Riesz bases are characterized; some examples are also provided to illustrate the general theory.展开更多
In this paper, we investigate compactly supported Riesz multiwavelet sequences and Riesz multiwavelet bases for L 2(? s ). Suppose ψ = (ψ1,..., ψ r ) T and $ \tilde \psi = (\tilde \psi ^1 ,...,\tilde \psi ^r )^T $ ...In this paper, we investigate compactly supported Riesz multiwavelet sequences and Riesz multiwavelet bases for L 2(? s ). Suppose ψ = (ψ1,..., ψ r ) T and $ \tilde \psi = (\tilde \psi ^1 ,...,\tilde \psi ^r )^T $ are two compactly supported vectors of functions in the Sobolev space (H μ(? s )) r for some μ > 0. We provide a characterization for the sequences {ψ jk l : l = 1,...,r, j ε ?, k ε ? s } and $ \tilde \psi _{jk}^\ell :\ell = 1,...,r,j \in \mathbb{Z},k \in \mathbb{Z}^s $ to form two Riesz sequences for L 2(? s ), where ψ jk l = m j/2ψ l (M j ·?k) and $ \tilde \psi _{jk}^\ell = m^{{j \mathord{\left/ {\vphantom {j 2}} \right. \kern-0em} 2}} \tilde \psi ^\ell (M^j \cdot - k) $ , M is an s × s integer matrix such that lim n→∞ M ?n = 0 and m = |detM|. Furthermore, let ? = (?1,...,? r ) T and $ \tilde \phi = (\tilde \phi ^1 ,...,\tilde \phi ^r )^T $ be a pair of compactly supported biorthogonal refinable vectors of functions associated with the refinement masks a, $ \tilde a $ and M, where a and $ \tilde a $ are finitely supported sequences of r × r matrices. We obtain a general principle for characterizing vectors of functions ψν = (ψν1,...,ψνr ) T and $ \tilde \psi ^\nu = (\tilde \psi ^{\nu 1} ,...,\tilde \psi ^{\nu r} )^T $ , ν = 1,..., m ? 1 such that two sequences {ψ jk νl : ν = 1,..., m ? 1, l = 1,...,r, j ε ?, k ε ? s } and { $ \tilde \psi _{jk}^\nu $ : ν=1,...,m?1,?=1,...,r, j ∈ ?, k ∈ ? s } form two Riesz multiwavelet bases for L 2(? s ). The bracket product [f, g] of two vectors of functions f, g in (L 2(? s )) r is an indispensable tool for our characterization.展开更多
基金financially supported by the Program for Liaoning Excellent Talents in Universities(LJQ2015062)the Fushun Science Project(FSKJHT201376)
文摘A bimodal mesoporous silica(BMMS) modified with amphiphilic compound(C_(19)H_(42)N)_3(PMo_(12)O_(40))(CTA-PMO) was prepared by the two-step impregnation method. Firstly, H3PMo12O40 was introduced into the bimodal mesoporous silica via impregnation, then C_(19)H_(42)NBr(CTAB) was grafted on the surface of BMMS containing H3PMo12O40 based on the chemical reaction between quaternary ammonium compound and the phosphomolybdic acid, and then the catalyst CTAPMO/BMMS was obtained. The samples were characterized by XRD, N_2 adsorption and desorption, FTIR, 31P-NMR, 29Si-NMR and TEM analyses. It is shown that the catalyst has a typical bimodal mesoporous structure, in which the small mesopore diameter is about 3.0 nm and the large mesopore diameter is about 5.0 nm. The chemical interaction happens between the Keggin structure and silica group of BMMS. Compared with the mono-modal porous Hβ and SBA-15 zeolites modified with CTA-PMO, CTA-PMO/BMMS showed better catalytic activity in the oxidative conversion of dibenzothiophene(DBT), and the desulfurization rate can reach about 94% with the help of extraction, and the catalyst can be separated by filtration and reused directly. The catalytic oxidative desulfurization mechanism on CTA-PMO/BMMS was proposed and verified.
基金This work was partially supported by the National Natural Science Foundation of China(Grant Nos.10071071 and 10471123)the Mathematical Tianyuan Foundation of the National Natural Science Foundation of China NSF(Grant No.10526036)China Postdoctoral Science Foundation(Grant No.20060391063)
文摘Biorthogonal multiple wavelets are generated from refinable function vectors by using the multiresolution analysis. In this paper we provide a general method for the construction of compactly supported biorthogonal multiple wavelets by refinable function vectors which are the solutions of vector refinement equations of the form $$\varphi (x) = \sum\limits_{\alpha \in \mathbb{Z}^s } {a(\alpha )\varphi (Mx - \alpha ), x \in \mathbb{R}^s } ,$$ where the vector of functions ? = (? 1, …, ? r)T is in $(L_2 (\mathbb{R}^s ))^r ,a = :(a(\alpha ))_{\alpha \in \mathbb{Z}^s } $ is a finitely supported sequence of r × r matrices called the refinement mask, and M is an s × s integer matrix such that lim n→∞ M ?n = 0. Our characterizations are in the general setting and the main results of this paper are the real extensions of some known results.
基金supported by National Natural Science Foundation of China (Grant No. 10671008)Beijing Natural Science Foundation (Grant No. 1092001)PHR (IHLB) and the project sponsored by SRF for ROCS,SEM of China
文摘Due to its good potential for digital signal processing, discrete Gabor analysis has interested some mathematicians. This paper addresses Gabor systems on discrete periodic sets, which can model signals to appear periodically but intermittently. Complete Gabor systems and Gabor frames on discrete periodic sets are characterized; a sufficient and necessary condition on what periodic sets admit complete Gabor systems is obtained; this condition is also proved to be sufficient and necessary for the existence of sets E such that the Gabor systems generated by χE are tight frames on these periodic sets; our proof is constructive, and all tight frames of the above form with a special frame bound can be obtained by our method; periodic sets admitting Gabor Riesz bases are characterized; some examples are also provided to illustrate the general theory.
基金supported by National Natural Science Foundation of China (Grant Nos. 10771190, 10471123)
文摘In this paper, we investigate compactly supported Riesz multiwavelet sequences and Riesz multiwavelet bases for L 2(? s ). Suppose ψ = (ψ1,..., ψ r ) T and $ \tilde \psi = (\tilde \psi ^1 ,...,\tilde \psi ^r )^T $ are two compactly supported vectors of functions in the Sobolev space (H μ(? s )) r for some μ > 0. We provide a characterization for the sequences {ψ jk l : l = 1,...,r, j ε ?, k ε ? s } and $ \tilde \psi _{jk}^\ell :\ell = 1,...,r,j \in \mathbb{Z},k \in \mathbb{Z}^s $ to form two Riesz sequences for L 2(? s ), where ψ jk l = m j/2ψ l (M j ·?k) and $ \tilde \psi _{jk}^\ell = m^{{j \mathord{\left/ {\vphantom {j 2}} \right. \kern-0em} 2}} \tilde \psi ^\ell (M^j \cdot - k) $ , M is an s × s integer matrix such that lim n→∞ M ?n = 0 and m = |detM|. Furthermore, let ? = (?1,...,? r ) T and $ \tilde \phi = (\tilde \phi ^1 ,...,\tilde \phi ^r )^T $ be a pair of compactly supported biorthogonal refinable vectors of functions associated with the refinement masks a, $ \tilde a $ and M, where a and $ \tilde a $ are finitely supported sequences of r × r matrices. We obtain a general principle for characterizing vectors of functions ψν = (ψν1,...,ψνr ) T and $ \tilde \psi ^\nu = (\tilde \psi ^{\nu 1} ,...,\tilde \psi ^{\nu r} )^T $ , ν = 1,..., m ? 1 such that two sequences {ψ jk νl : ν = 1,..., m ? 1, l = 1,...,r, j ε ?, k ε ? s } and { $ \tilde \psi _{jk}^\nu $ : ν=1,...,m?1,?=1,...,r, j ∈ ?, k ∈ ? s } form two Riesz multiwavelet bases for L 2(? s ). The bracket product [f, g] of two vectors of functions f, g in (L 2(? s )) r is an indispensable tool for our characterization.