The optical spectrum can serve as a good spectrum resource for wideband wireless communications. The advantages of optical wireless communications (OWC) mainly lie in two aspects: the potential large transmission b...The optical spectrum can serve as a good spectrum resource for wideband wireless communications. The advantages of optical wireless communications (OWC) mainly lie in two aspects: the potential large transmission bandwidth due to the high-frequency carrier, and thecommunication security due to no radio-frequency radiation. Thus OWC can be applied in the seenarios where the radio silence is required or the radio frequency radiation may cause explosions, for example in the battle field or some special ar- eas in the storehouses.展开更多
Visible light communication (VLC) is an emerging technology in optical wireless communication (OWC) that has attracted worldwide research in recent years. VLC can combine communication and illumina- tion together,...Visible light communication (VLC) is an emerging technology in optical wireless communication (OWC) that has attracted worldwide research in recent years. VLC can combine communication and illumina- tion together, which could be applied in many application scenarios such as visible light communication local area networks (VLANs), indoor localization, and intelligent lighting. In recent years, pioneering and significant work have been made in the field of VLC. In this paper, an overview of the recent progress in VLC is presented. We also demonstrate our recent experiment results including bidirectional 100 Mbit/s VLAN or Li-Fi system based on 00K modulation without blue filter. The VLC systems that we proposed are good solutions for high-speed VLC application systems with low-cost and low-complexity. VLC technology shows a bright future due to its inherent advantages, shortage of RF spectra and ever increasing popularity of white LEDs.展开更多
The latest uproar in this era is about a technology termed as Light Fidelity or more commonly known as Li-Fi. There are currently two trends being seen: First, the extension or enrichment of wireless services and othe...The latest uproar in this era is about a technology termed as Light Fidelity or more commonly known as Li-Fi. There are currently two trends being seen: First, the extension or enrichment of wireless services and other being increased in user demand for these services, but the available RF spectrum for usage is very limited. So the new technology of Li-Fi came into picture, which uses visible light as a source of communication. Li-Fi is the most recent development which is resourceful. In this technology, LEDs are used to transmit data in the visible light spectrum. This technology can be compared with that of Wi-Fi and offers advantages like increased accessible spectrum, efficiency, security, low latency and much higher speed. This research paper aims at designing a Li-Fi transceiver using Arduino that is able to transmit digital data. The hardware has been designed using Eagle CAD (version 7.1.0) tool and Proteus design tool (version 8). The software coding is done by using Java (version 8). Successful transmission and reception of text, image and video signals is carried out on the transceiver. Hence this research work gives an innovative way of designing a transceiver which works by using off the shelf low cost components and using visible light spectrum.展开更多
文摘The optical spectrum can serve as a good spectrum resource for wideband wireless communications. The advantages of optical wireless communications (OWC) mainly lie in two aspects: the potential large transmission bandwidth due to the high-frequency carrier, and thecommunication security due to no radio-frequency radiation. Thus OWC can be applied in the seenarios where the radio silence is required or the radio frequency radiation may cause explosions, for example in the battle field or some special ar- eas in the storehouses.
基金supported by the National High Technology Research and Development Program of China(Nos.2015AA033303,2013AA013602,2013AA013603,2013AA03A104)the National Natural Science Foundation of China(Nos.61178051,61321063,61335010,61178048,61275169)the National Basic Research Program of China(Nos.2013CB329205,2011CBA00608)
文摘Visible light communication (VLC) is an emerging technology in optical wireless communication (OWC) that has attracted worldwide research in recent years. VLC can combine communication and illumina- tion together, which could be applied in many application scenarios such as visible light communication local area networks (VLANs), indoor localization, and intelligent lighting. In recent years, pioneering and significant work have been made in the field of VLC. In this paper, an overview of the recent progress in VLC is presented. We also demonstrate our recent experiment results including bidirectional 100 Mbit/s VLAN or Li-Fi system based on 00K modulation without blue filter. The VLC systems that we proposed are good solutions for high-speed VLC application systems with low-cost and low-complexity. VLC technology shows a bright future due to its inherent advantages, shortage of RF spectra and ever increasing popularity of white LEDs.
文摘The latest uproar in this era is about a technology termed as Light Fidelity or more commonly known as Li-Fi. There are currently two trends being seen: First, the extension or enrichment of wireless services and other being increased in user demand for these services, but the available RF spectrum for usage is very limited. So the new technology of Li-Fi came into picture, which uses visible light as a source of communication. Li-Fi is the most recent development which is resourceful. In this technology, LEDs are used to transmit data in the visible light spectrum. This technology can be compared with that of Wi-Fi and offers advantages like increased accessible spectrum, efficiency, security, low latency and much higher speed. This research paper aims at designing a Li-Fi transceiver using Arduino that is able to transmit digital data. The hardware has been designed using Eagle CAD (version 7.1.0) tool and Proteus design tool (version 8). The software coding is done by using Java (version 8). Successful transmission and reception of text, image and video signals is carried out on the transceiver. Hence this research work gives an innovative way of designing a transceiver which works by using off the shelf low cost components and using visible light spectrum.