The grades of ultra-pure ferritic stainless steels, especially the grades used in automobile exhaust system, were reviewed. The dependence of properties on alloying elements, the refining facilities, and the mechanism...The grades of ultra-pure ferritic stainless steels, especially the grades used in automobile exhaust system, were reviewed. The dependence of properties on alloying elements, the refining facilities, and the mechanism of the reactions in steel melts were described in detail. Vacuum, strong stirring, and powder injection proved to be effective technologies in the melting of ultra-pure ferritic stainless steels. The application of the ferritic grades was also briefly introduced.展开更多
In this study, the influence of annealing processes for cold-rolled sheets on the microstructure and mechanical performance of ultra-pure 430 ferritic stainless steel was investigated. Thermo-Calc calculation, organiz...In this study, the influence of annealing processes for cold-rolled sheets on the microstructure and mechanical performance of ultra-pure 430 ferritic stainless steel was investigated. Thermo-Calc calculation, organization observation, SEM detection,and tensile tests were used to discern the optimal annealing process. It is found that the microstructure is made up by the fine and uniform recrystallized ferritic grains after annealing. The optimum annealing process for ultra-pure 430 stainless steel is 950 ℃ for 90 s. After annealing, the stainless steel can obtain the optimum microstructure,recrystallization texture, and mechanical properties.展开更多
In order to meet the demands of service life and the synthetical performance/price ratio of stainless steel in the solar water heater industry, the low molybdenum ultra-pure ferritic stainless steel (FSS) B445J1M wa...In order to meet the demands of service life and the synthetical performance/price ratio of stainless steel in the solar water heater industry, the low molybdenum ultra-pure ferritic stainless steel (FSS) B445J1M was developed at Baosteel. In this study, comparative studies were carried out on the mechanical properties, the formability and the corrosion resistance of B445J1M ,304 and 444 ,and the advantages and application fields of B445J1M were summarized.展开更多
Excellent weldability substantially contributes to the intrinsic quality of steels,while appropriate chemical composition plays a primary role in the essential weldability of steels.The poor weldability of ferritic st...Excellent weldability substantially contributes to the intrinsic quality of steels,while appropriate chemical composition plays a primary role in the essential weldability of steels.The poor weldability of ferritic stainless steels could be improved through modification with minor alloy elements while minimally increasing the cost.Therefore,studying the effect of minor alloy elements on the weldability of steels is of considerable importance.In this study,several steels of middle-chromium hyperpure ferritic stainless 00Cr21Ti with different Ni content(0.3%,0.5%,0.8%,and 1.0%)were developed,and their weldabilities of butt joint samples welded using the metal inert gas welding process,including the influence of welded joints on the microstructure,tensile performance,corrosion resistance,and fatigue property,were investigated.Results show that the steels with w(Ni)≥0.8%exhibit excellent mechanical properties compared with those with low-Ni content steels,further,their impact toughness at normal atmospheric temperature meets the industrial application standard and the fatigue property is similar to that of 304 austenitic stainless steel.Moreover,results show that the corrosion resistance of all the samples is almost at the same level.The results acquired in this study are supposed to be useful for the optimization of the chemical composition of stainless steels aiming to improve weldability.展开更多
The oxide scale structure of 443NT hot-rolled strips was analyzed. The pickling of 443NT stainless steel was simulated via the 6σ experimental design. The results indicate that parabolic relations exist between the p...The oxide scale structure of 443NT hot-rolled strips was analyzed. The pickling of 443NT stainless steel was simulated via the 6σ experimental design. The results indicate that parabolic relations exist between the pickling scores and some of the pickling influencing factors, such as the nitric acid density, the hydrofluoric acid density and the pickling temperature. Effective pickling of 443NT can be achieved by controlling the pickling processing parameters with the HNO3 density ranging from 80 g/L to 180 g/L ,the HF density from 20 g/L to 40 g/L and the pickling temperature from 45 ℃ to60 ℃.展开更多
As stabilizing elements added into ultra-pure ferritic stainless steels, niobium and titanium react with car- bon and nitrogen to form carbonitrides and have great effects on the ratio of equiaxed zone and the grain s...As stabilizing elements added into ultra-pure ferritic stainless steels, niobium and titanium react with car- bon and nitrogen to form carbonitrides and have great effects on the ratio of equiaxed zone and the grain size of solidi- fication structure of ingots, which remarkably affect the quality of cold-rolled sheets. Combined with thermodynamic calculation, style and precipitation progress of inclusions in ultra-pure ferritic stainless steels were investigated by optical microscopy, scanning electron microscopy, transmission electron microscopy and energy dispersive spectros- copy. The results indicate that the inclusions are mainly Ti-Al-N- O system inclusions in ultra-pure ferritic stainless steels. Al2Oa starts to precipitate firstly and then TiOx and TiN precipitates sequently. The inclusions are mainly single TiN particles and complex inclusions with Al2O3-Ti2O3 as cores and covered with TiN under the condition of 0.31% titanium addition and mainly Al2O3 under the condition of 0.01% titanium addition. A few (Nb,Ti)N parti- cles precipitate because of no enough titanium to react with nitrogen when titanium addition is 0.01 %. In addition, fine Nb(C, N) particles with size of less than 500 nm precipitate at relatively low temperature.展开更多
Submerged entry nozzle(SEN)clogging during continuous casting of Ti-stabilized ultra-pure ferritic stainless(Ti-UPFS)steels was systematically investigated via cross-sectional analysis and acid dissolution treatment.T...Submerged entry nozzle(SEN)clogging during continuous casting of Ti-stabilized ultra-pure ferritic stainless(Ti-UPFS)steels was systematically investigated via cross-sectional analysis and acid dissolution treatment.The SEN deposit profile was characterized as occurring in three major layers:(1)an eroded refractory layer;(2)an initial adhesive layer comprised an Al_(2)O_(3)-ZrO_(2) composite sub-layer and a dense Al_(2)O_(3)-based deposit sub-layer;and(3)a porous multiphase deposit layer mainly consisting of MgO·Al_(2)O_(3),CaO-Al_(2)O_(3),and CaO-TiOx.The MgO·Al_(2)O_(3)-rich inclusions did not adhere directly to the eroded refractory but were entrapped during the deposit growth.Results of inclusion characterization in the tundish revealed that the MgO·Al2O3-rich particles present in the tundish served as the primary source of clogging deposits.Furthermore,a novel cavity-induced adhesion model by circular approximation was established to explain the effects of complex inclusion characteristics and refractory material type on adhesion force.A high number of small MgO·Al_(2)O_(3) inclusions were expected to accelerate the buildup of clogging deposits.Improving the modification of MgO·Al_(2)O_(3)-rich inclusions in the size range of 2-4μm by Ca treatment was crucial to minimizing the risk of SEN clogging during the continuous casting of Ti-UPFS steels.展开更多
An innovative grade of ferritic stainless steel,ultra-pure 18Cr–2Mo thick plate,was designed and produced for special industrial application.In order to maintain its mechanical properties after joining,three advanced...An innovative grade of ferritic stainless steel,ultra-pure 18Cr–2Mo thick plate,was designed and produced for special industrial application.In order to maintain its mechanical properties after joining,three advanced joining methods,hybrid laser arc welding,activated flux tungsten inert gas welding and friction stir welding,were selected and conducted to connect the thick plates.The feasibility of three joining methods,the microstructure and mechanical properties were compared,and the results have demonstrated that the sound joint was successfully produced using the selected parameters through friction stir welding.The obtained hardness and impact toughness of the weld zone were satisfying.In terms of activated flux tungsten inert gas welding,the crack will be created due to microstructural brittleness.And as for hybrid laser arc welding,the weld zone is narrow,and the addition of wire during welding for the top weld metal area leads to higher formation ratio of low-angle grain boundaries,which is beneficial to performance of the joint.However,there is still a weak area in the fusion line of the welded joint.The result has illustrated that the welding of innovative ultra-pure ferritic stainless steel thick plate by friction stir welding is feasible.展开更多
In order to clarify and control the silver defect on surface of cold-rolled sheet of the Ti-stabilized ultra-pure ferrite stainless steel, the distribution of TiN inclusions on the cross section of hot-rolled plate wa...In order to clarify and control the silver defect on surface of cold-rolled sheet of the Ti-stabilized ultra-pure ferrite stainless steel, the distribution of TiN inclusions on the cross section of hot-rolled plate was studied using automated scanning electron microscopy/energy-dispersive X-ray spectroscopy inclusion analysis (ASPEX 1020 system). It was found that the number density decreases sharply from the surface to the center of the hot-rolled plate, whereas the average size increases. Then, the distribution of TiN inclusions on the cross section of continuously cast slab was investigated. Similarly, numerous small-sized TiN inclusions were generated at the subsurface of the slab. The average size rapidly increased and the number density dramatically decreased from the subsurface to 1/4 thickness, while from 1/4 thickness to 1/2 thickness, the increase in average size and the decrease in number density were slight. Thermodynamics results showed that TiN inclusion was formed below the liquidus temperature, which indicated that TiN inclusions could not be formed during secondary refining. Considering the microsegregation of solute elements and the equilibrium of TiN formation during solidification, TiN precipitated in the mushy zone when the solid fraction was close to 0.2. The growth of TiN was analyzed based on the diffusion-controlled growth model. With the increase in cooling rate, the time for TiN growth decreased and the size of TiN inclusions was diminished, which revealed the size distribution of TiN inclusions in the cast slab qualitatively.展开更多
基金Item Sponsored by National Natural Science Foundation of China Baoshan Iron and Steel Co Ltd(50534010)
文摘The grades of ultra-pure ferritic stainless steels, especially the grades used in automobile exhaust system, were reviewed. The dependence of properties on alloying elements, the refining facilities, and the mechanism of the reactions in steel melts were described in detail. Vacuum, strong stirring, and powder injection proved to be effective technologies in the melting of ultra-pure ferritic stainless steels. The application of the ferritic grades was also briefly introduced.
文摘In this study, the influence of annealing processes for cold-rolled sheets on the microstructure and mechanical performance of ultra-pure 430 ferritic stainless steel was investigated. Thermo-Calc calculation, organization observation, SEM detection,and tensile tests were used to discern the optimal annealing process. It is found that the microstructure is made up by the fine and uniform recrystallized ferritic grains after annealing. The optimum annealing process for ultra-pure 430 stainless steel is 950 ℃ for 90 s. After annealing, the stainless steel can obtain the optimum microstructure,recrystallization texture, and mechanical properties.
文摘In order to meet the demands of service life and the synthetical performance/price ratio of stainless steel in the solar water heater industry, the low molybdenum ultra-pure ferritic stainless steel (FSS) B445J1M was developed at Baosteel. In this study, comparative studies were carried out on the mechanical properties, the formability and the corrosion resistance of B445J1M ,304 and 444 ,and the advantages and application fields of B445J1M were summarized.
文摘Excellent weldability substantially contributes to the intrinsic quality of steels,while appropriate chemical composition plays a primary role in the essential weldability of steels.The poor weldability of ferritic stainless steels could be improved through modification with minor alloy elements while minimally increasing the cost.Therefore,studying the effect of minor alloy elements on the weldability of steels is of considerable importance.In this study,several steels of middle-chromium hyperpure ferritic stainless 00Cr21Ti with different Ni content(0.3%,0.5%,0.8%,and 1.0%)were developed,and their weldabilities of butt joint samples welded using the metal inert gas welding process,including the influence of welded joints on the microstructure,tensile performance,corrosion resistance,and fatigue property,were investigated.Results show that the steels with w(Ni)≥0.8%exhibit excellent mechanical properties compared with those with low-Ni content steels,further,their impact toughness at normal atmospheric temperature meets the industrial application standard and the fatigue property is similar to that of 304 austenitic stainless steel.Moreover,results show that the corrosion resistance of all the samples is almost at the same level.The results acquired in this study are supposed to be useful for the optimization of the chemical composition of stainless steels aiming to improve weldability.
文摘The oxide scale structure of 443NT hot-rolled strips was analyzed. The pickling of 443NT stainless steel was simulated via the 6σ experimental design. The results indicate that parabolic relations exist between the pickling scores and some of the pickling influencing factors, such as the nitric acid density, the hydrofluoric acid density and the pickling temperature. Effective pickling of 443NT can be achieved by controlling the pickling processing parameters with the HNO3 density ranging from 80 g/L to 180 g/L ,the HF density from 20 g/L to 40 g/L and the pickling temperature from 45 ℃ to60 ℃.
基金Item Sponsored by Fundamental Research Funds for Central Universities of China(N100602011,N100302010)National Natural Science Foundation of China(51104039)
文摘As stabilizing elements added into ultra-pure ferritic stainless steels, niobium and titanium react with car- bon and nitrogen to form carbonitrides and have great effects on the ratio of equiaxed zone and the grain size of solidi- fication structure of ingots, which remarkably affect the quality of cold-rolled sheets. Combined with thermodynamic calculation, style and precipitation progress of inclusions in ultra-pure ferritic stainless steels were investigated by optical microscopy, scanning electron microscopy, transmission electron microscopy and energy dispersive spectros- copy. The results indicate that the inclusions are mainly Ti-Al-N- O system inclusions in ultra-pure ferritic stainless steels. Al2Oa starts to precipitate firstly and then TiOx and TiN precipitates sequently. The inclusions are mainly single TiN particles and complex inclusions with Al2O3-Ti2O3 as cores and covered with TiN under the condition of 0.31% titanium addition and mainly Al2O3 under the condition of 0.01% titanium addition. A few (Nb,Ti)N parti- cles precipitate because of no enough titanium to react with nitrogen when titanium addition is 0.01 %. In addition, fine Nb(C, N) particles with size of less than 500 nm precipitate at relatively low temperature.
基金This work was financially supported by the National Natural Science Foundation of China(No.51574026).
文摘Submerged entry nozzle(SEN)clogging during continuous casting of Ti-stabilized ultra-pure ferritic stainless(Ti-UPFS)steels was systematically investigated via cross-sectional analysis and acid dissolution treatment.The SEN deposit profile was characterized as occurring in three major layers:(1)an eroded refractory layer;(2)an initial adhesive layer comprised an Al_(2)O_(3)-ZrO_(2) composite sub-layer and a dense Al_(2)O_(3)-based deposit sub-layer;and(3)a porous multiphase deposit layer mainly consisting of MgO·Al_(2)O_(3),CaO-Al_(2)O_(3),and CaO-TiOx.The MgO·Al_(2)O_(3)-rich inclusions did not adhere directly to the eroded refractory but were entrapped during the deposit growth.Results of inclusion characterization in the tundish revealed that the MgO·Al2O3-rich particles present in the tundish served as the primary source of clogging deposits.Furthermore,a novel cavity-induced adhesion model by circular approximation was established to explain the effects of complex inclusion characteristics and refractory material type on adhesion force.A high number of small MgO·Al_(2)O_(3) inclusions were expected to accelerate the buildup of clogging deposits.Improving the modification of MgO·Al_(2)O_(3)-rich inclusions in the size range of 2-4μm by Ca treatment was crucial to minimizing the risk of SEN clogging during the continuous casting of Ti-UPFS steels.
文摘An innovative grade of ferritic stainless steel,ultra-pure 18Cr–2Mo thick plate,was designed and produced for special industrial application.In order to maintain its mechanical properties after joining,three advanced joining methods,hybrid laser arc welding,activated flux tungsten inert gas welding and friction stir welding,were selected and conducted to connect the thick plates.The feasibility of three joining methods,the microstructure and mechanical properties were compared,and the results have demonstrated that the sound joint was successfully produced using the selected parameters through friction stir welding.The obtained hardness and impact toughness of the weld zone were satisfying.In terms of activated flux tungsten inert gas welding,the crack will be created due to microstructural brittleness.And as for hybrid laser arc welding,the weld zone is narrow,and the addition of wire during welding for the top weld metal area leads to higher formation ratio of low-angle grain boundaries,which is beneficial to performance of the joint.However,there is still a weak area in the fusion line of the welded joint.The result has illustrated that the welding of innovative ultra-pure ferritic stainless steel thick plate by friction stir welding is feasible.
文摘In order to clarify and control the silver defect on surface of cold-rolled sheet of the Ti-stabilized ultra-pure ferrite stainless steel, the distribution of TiN inclusions on the cross section of hot-rolled plate was studied using automated scanning electron microscopy/energy-dispersive X-ray spectroscopy inclusion analysis (ASPEX 1020 system). It was found that the number density decreases sharply from the surface to the center of the hot-rolled plate, whereas the average size increases. Then, the distribution of TiN inclusions on the cross section of continuously cast slab was investigated. Similarly, numerous small-sized TiN inclusions were generated at the subsurface of the slab. The average size rapidly increased and the number density dramatically decreased from the subsurface to 1/4 thickness, while from 1/4 thickness to 1/2 thickness, the increase in average size and the decrease in number density were slight. Thermodynamics results showed that TiN inclusion was formed below the liquidus temperature, which indicated that TiN inclusions could not be formed during secondary refining. Considering the microsegregation of solute elements and the equilibrium of TiN formation during solidification, TiN precipitated in the mushy zone when the solid fraction was close to 0.2. The growth of TiN was analyzed based on the diffusion-controlled growth model. With the increase in cooling rate, the time for TiN growth decreased and the size of TiN inclusions was diminished, which revealed the size distribution of TiN inclusions in the cast slab qualitatively.