期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
张量积空间中框架的一种新构造
1
作者 段东东 姚振宇 +1 位作者 马小燕 吴文海 《西安电力高等专科学校学报》 2010年第4期59-61,共3页
在小波分析中,因为非张量积且较实用的高维小波基不多见,常常用低维的小波基作张量积来构造高维小波基。研究了两个Hilbert空间中的框架张量以及张量积空间中框架关系。
关键词 张量积 框架 算子
下载PDF
Riesz multiwavelet bases generated by vector refinement equation 被引量:3
2
作者 LI Song LIU ZhiSong 《Science China Mathematics》 SCIE 2009年第3期468-480,共13页
In this paper, we investigate compactly supported Riesz multiwavelet sequences and Riesz multiwavelet bases for L 2(? s ). Suppose ψ = (ψ1,..., ψ r ) T and $ \tilde \psi = (\tilde \psi ^1 ,...,\tilde \psi ^r )^T $ ... In this paper, we investigate compactly supported Riesz multiwavelet sequences and Riesz multiwavelet bases for L 2(? s ). Suppose ψ = (ψ1,..., ψ r ) T and $ \tilde \psi = (\tilde \psi ^1 ,...,\tilde \psi ^r )^T $ are two compactly supported vectors of functions in the Sobolev space (H μ(? s )) r for some μ > 0. We provide a characterization for the sequences {ψ jk l : l = 1,...,r, j ε ?, k ε ? s } and $ \tilde \psi _{jk}^\ell :\ell = 1,...,r,j \in \mathbb{Z},k \in \mathbb{Z}^s $ to form two Riesz sequences for L 2(? s ), where ψ jk l = m j/2ψ l (M j ·?k) and $ \tilde \psi _{jk}^\ell = m^{{j \mathord{\left/ {\vphantom {j 2}} \right. \kern-0em} 2}} \tilde \psi ^\ell (M^j \cdot - k) $ , M is an s × s integer matrix such that lim n→∞ M ?n = 0 and m = |detM|. Furthermore, let ? = (?1,...,? r ) T and $ \tilde \phi = (\tilde \phi ^1 ,...,\tilde \phi ^r )^T $ be a pair of compactly supported biorthogonal refinable vectors of functions associated with the refinement masks a, $ \tilde a $ and M, where a and $ \tilde a $ are finitely supported sequences of r × r matrices. We obtain a general principle for characterizing vectors of functions ψν = (ψν1,...,ψνr ) T and $ \tilde \psi ^\nu = (\tilde \psi ^{\nu 1} ,...,\tilde \psi ^{\nu r} )^T $ , ν = 1,..., m ? 1 such that two sequences {ψ jk νl : ν = 1,..., m ? 1, l = 1,...,r, j ε ?, k ε ? s } and { $ \tilde \psi _{jk}^\nu $ : ν=1,...,m?1,?=1,...,r, j ∈ ?, k ∈ ? s } form two Riesz multiwavelet bases for L 2(? s ). The bracket product [f, g] of two vectors of functions f, g in (L 2(? s )) r is an indispensable tool for our characterization. 展开更多
关键词 vector refinement equations Riesz multiwavelet base biorthogonal wavelets 42C40 39B12 46b15 47A10 47B37
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部